23 Matching Results

Search Results

Advanced search parameters have been applied.

An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

Description: The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated “toolkit” consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.
Date: June 1, 2010
Creator: Leahy, Timothy J.
Partner: UNT Libraries Government Documents Department

Evaluation Methodology For Proliferation Resistance And Physical Protection Of Generation IV Nuclear Energy Systems: An Overview

Description: This paper provides an overview of the methodology approach developed by the Generation IV International Forum Expert Group on Proliferation Resistance & Physical Protection for evaluation of Proliferation Resistance and Physical Protection robustness of Generation IV nuclear energy systems options. The methodology considers a set of alternative systems and evaluates their resistance or robustness to a collection of potential threats. For the challenges considered, the response of the system to these challenges is assessed and expressed in terms of outcomes. The challenges to the system are given by the threats posed by potential proliferant States and sub-national adversaries on the nuclear systems. The characteristics of the Generation IV systems, both technical and institutional, are used to evaluate their response to the threats and determine their resistance against the proliferation threats and robustness against sabotage and theft threats. System response encompasses three main elements: 1.System Element Identification. The nuclear energy system is decomposed into smaller elements (subsystems) at a level amenable to further analysis. 2.Target Identification and Categorization. A systematic process is used to identify and select representative targets for different categories of pathways, within each system element, that actors (proliferant States or adversaries) might choose to use or attack. 3.Pathway Identification and Refinement. Pathways are defined as potential sequences of events and actions followed by the proliferant State or adversary to achieve its objectives (proliferation, theft or sabotage). For each target, individual pathway segments are developed through a systematic process, analyzed at a high level, and screened where possible. Segments are connected into full pathways and analyzed in detail. The outcomes of the system response are expressed in terms of PR&PP measures. Measures are high-level characteristics of a pathway that include information important to the evaluation methodology users and to the decisions of a proliferant State or adversary. They are ...
Date: May 1, 2006
Creator: Bjornard, T.; Bari, R.; Nishimura, R.; Peterson, P.; Roglans, J.; Bley, D. et al.
Partner: UNT Libraries Government Documents Department

Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

Description: The project entitled, “Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors”, was conducted as a DOE NERI project collaboration between Texas A&M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.
Date: September 10, 2009
Creator: Vierow, Karen & Aldemir, Tunc
Partner: UNT Libraries Government Documents Department

PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION WORKING GROUP: METHODOLOGY AND APPLICATIONS

Description: We summarize the technical progress and accomplishments on the evaluation methodology for proliferation resistance and physical protection (PR and PP) of Generation IV nuclear energy systems. We intend the results of the evaluations performed with the methodology for three types of users: system designers, program policy makers, and external stakeholders. The PR and PP Working Group developed the methodology through a series of demonstration and case studies. Over the past few years various national and international groups have applied the methodology to nuclear energy system designs as well as to developing approaches to advanced safeguards.
Date: November 14, 2012
Creator: A., Bari R.; Whitlock, J.; Therios, I.U. & Peterson, P.F.
Partner: UNT Libraries Government Documents Department

A Comparison of the Safety Analysis Process and the Generation IV Proliferation Resistance/Physical Protection Assessment Methodology

Description: The Generation IV International Forum (GIF) is a vehicle for the cooperative international development of future nuclear energy systems. The Generation IV program has established primary objectives in the areas of sustainability, economics, safety and reliability, and Proliferation Resistance and Physical Protection (PR&PP). In order to help meet the latter objective a program was launched in December 2002 to develop a rigorous means to assess nuclear energy systems with respect to PR&PP. The study of Physical Protection of a facility is a relatively well established methodology, but an approach to evaluate the Proliferation Resistance of a nuclear fuel cycle is not. This paper will examine the Proliferation Resistance (PR) evaluation methodology being developed by the PR group, which is largely a new approach and compare it to generally accepted nuclear facility safety evaluation methodologies. Safety evaluation methods have been the subjects of decades of development and use. Further, safety design and analysis is fairly broadly understood, as well as being the subject of federally mandated procedures and requirements. It is therefore extremely instructive to compare and contrast the proposed new PR evaluation methodology process with that used in safety analysis. By so doing, instructive and useful conclusions can be derived from the comparison that will help to strengthen the PR methodological approach as it is developed further. From the comparison made in this paper it is evident that there are very strong parallels between the two processes. Most importantly, it is clear that the proliferation resistance aspects of nuclear energy systems are best considered beginning at the very outset of the design process. Only in this way can the designer identify and cost effectively incorporate intrinsic features that might be difficult to implement at some later stage. Also, just like safety, the process to implement proliferation resistance should be a ...
Date: May 1, 2006
Creator: Bjornard, T. A. & Zentner, M. D.
Partner: UNT Libraries Government Documents Department

Roadmap to NRC Approval of Ceramic Matrix Composites in Generation IV Reactors

Description: This report provides an initial roadmap to obtain Nuclear Regulatory Commission (NRC) approval for using these material systems in a nuclear application. The possible paths taken to achieving NRC approval are necessarily subject to change as this is an on-going process that shifts as more data and a clearer understanding of the nuclear regulations are gathered.
Date: May 1, 2006
Creator: Jenkins, M. G.; Lara-Curzio, E. & Windes, W.
Partner: UNT Libraries Government Documents Department

Evaluation of Integrated High Temperature Component Testing Needs

Description: This paper describes the requirements for a large-scale component test capability to support the development of advanced nuclear reactor technology and their adaptation to commercial applications that advance U.S. energy economy, reliability, and security and reduce carbon emissions.
Date: May 1, 2009
Creator: Soto, Rafael; Duncan, David & Tonc, Vincent
Partner: UNT Libraries Government Documents Department

Development of Risk-Based and Technology-Independent Safety Criteria for Generation IV Systems

Description: This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.
Date: March 31, 2009
Creator: Kastenberg, William E.; Blandford, Edward & Kim, Lance
Partner: UNT Libraries Government Documents Department

SCWR - Safety Systems and Containment Investigations - Summary Report

Description: The design of the Generation IV Supercritical Water Reactor (SCWR) was reviewed. The general design criteria and safety requirements were specified to provide a basis for the design of the safety systems and the containment. A combination of the most stringent requirements applied today is used. The majority of the effort was devoted to developing the preliminary design of a reactor core cooling system that mitigates the consequences of loss of feedwater events.
Date: September 8, 2004
Creator: Jonsson, Nils-Olov
Partner: UNT Libraries Government Documents Department

A New Class of Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors

Description: Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.
Date: May 1, 2008
Creator: Jain, Mohit; Skandan, Ganesh; Khose, Gordon E. & Maro, Judith
Partner: UNT Libraries Government Documents Department

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report

Description: The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The ...
Date: January 1, 2005
Creator: MacDonald, Philip E.
Partner: UNT Libraries Government Documents Department

MONJU AS AN INTERNATIONAL ASSET: INTERNATIONAL ASSISTANCE AND COOPERATION

Description: The role of the fast breeder reactor prototype Monju has expanded to meet the challenges of the 21st century. Today instead of being merely a demonstration of an economical, safe, environmentally responsible source of energy, as originally designed, it has also the capability to be transformed into a unique International Irradiations Test Facility. The potential for Monju's role in the Generation IV nuclear energy systems development, and fast reactor research and development area is clear. Its incomparable fast neutron spectrum density will be a major interest not only for Sodium Fast Reactor but for all the Generation IV concepts. As Monju's potential future role is laid out, plans for future tests can be made. Tests of advanced fuels and materials in support of the Advanced Fuel Cycle Initiative, as well as Minor Actinide Burning can be envisaged. Tests planned on transmutation of minor actinides have the objectives of an industrial demonstration of the reduction of toxic wastes and the stewardship burden of the long-lived wastes. Tests and demonstrations carried out at Monju will provide a bridge from existing Generation III fast reactor systems, now in the later stages of their projected operational lifetimes, to Generation IV nuclear energy systems. The JNC founded the International Cooperation and Technology Development Center and the International Research Fellowship program to facilitate this international effort. The Center exists specifically to formulate and perform projects ensuring the maximum technical benefit from Monju. The staff includes physicists, engineers and nuclear industry leaders from around the world. Research Fellowships center is based on several technical areas: advanced instrumentation, inspection techniques, plant reliability and safety, nucleonics, sodium handling technologies, irradiation and experiment management and coordination and advanced post-irradiation examination capabilities and techniques. This paper describes the recent involvement of three international researchers from the USA, France and the UK ...
Date: October 6, 2004
Creator: Rodriguez, G.; Wisner, R.S. & Stuart, R.
Partner: UNT Libraries Government Documents Department

STAR: The Secure Transportable Autonomous Reactor System - Encapsulated Fission Heat Source

Description: OAK-B135 The Encapsulated Nuclear Heat Source (ENHS) is a novel 125 MWth fast spectrum reactor concept that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor. It uses Pb-Bi or other liquid-metal coolant and is intended to be factory manufactured in large numbers to be economically competitive. It is anticipated to be most useful to developing countries. The US team studying the feasibility of the ENHS reactor concept consisted of the University of California, Berkeley, Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL) and Westinghouse. Collaborating with the US team were three Korean organizations: Korean Atomic Energy Research Institute (KAERI), Korean Advanced Institute for Science and Technology (KAIST) and the University of Seoul, as well as the Central Research Institute of the Electrical Power Industry (CRIEPI) of Japan. Unique features of the ENHS include at least 20 years of operation without refueling; no fuel handling in the host country; no pumps and valves; excess reactivity does not exceed 1$; fully passive removal of the decay heat; very small probability of core damaging accidents; autonomous operation and capability of load-following over a wide range; very long plant life. In addition it offers a close match between demand and supply, large tolerance to human errors, is likely to get public acceptance via demonstration of superb safety, lack of need for offsite response, and very good proliferation resistance. The ENHS reactor is designed to meet the requirements of Generation IV reactors including sustainable energy supply, low waste, high level of proliferation resistance, high level of safety and reliability, acceptable risk to capital and, hopefully, also competitive busbar cost of electricity.
Date: October 31, 2003
Creator: Greenspan, Ehud
Partner: UNT Libraries Government Documents Department

Development of a Methodology to Assess Proliferation Resistance and Physical Protection for Generation IV Systems

Description: Enhanced proliferation resistance and physical protection (PR&PP) is one of the technology goals for advanced nuclear concepts, such as Generation IV systems. Under the auspices of the Generation IV International Forum, the Office of Nuclear Energy, Science and Technology of the U.S. DOE, the Office of Nonproliferation Policy of the National Nuclear Security Administration, and participating organizations from six other countries are sponsoring an international working group to develop an evaluation methodology for PR&PP. This methodology will permit an objective PR&PP comparison between alternative nuclear systems (e.g., different reactor types or fuel cycles) and support design optimization to enhance robustness against proliferation, theft and sabotage. The paper summarizes the proposed assessment methodology including the assessment framework, measures used to express the PR&PP characteristics of the system, threat definition, system element and target identification, pathway identification and analysis, and estimation of the measures.
Date: October 6, 2004
Creator: Nishimura, R.; Bari, R.; Peterson, P.; Roglans-Ribas, J. & Kalenchuk, D.
Partner: UNT Libraries Government Documents Department

Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

Description: Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency.
Date: June 1, 2006
Creator: Oh, Chang H.
Partner: UNT Libraries Government Documents Department

Experimental Measurement of Flow Phenomena in a VHTR Lower Plenum Model

Description: The Very-High-Temperature Reactor (VHTR) is one of six reactor technologies chosen for further development by the Generation IV International Forum. In addition this system is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. In preparation for the thermal-hydraulics and safety analyses that will be required to confirm the performance of the NGNP, work has begun on readying the computational tools that will be needed to predict the thermal-hydraulics conditions and safety margins of the reactor design. Meaningful feasibility studies for VHTR designs will require accurate, reliable predictions of material temperatures which depend upon the thermal convection in the coolant channels of the core and other components. Unfortunately, one-dimensional system codes for gas-cooled reactors typically underpredict these temperatures, particularly for reduced power operations and hypothesized accident scenarios. Likewise, most turbulence models in general-purpose CFD codes also underpredict these temperatures. Matched-Index-of-Refraction (MIR) fluid dynamics experiments have been designed and built to develop benchmark databases for the assessment of CFD solutions of the momentum equations, scalar mixing and turbulence models for typical VHTR plenum geometries in the limiting case of negligible buoyancy and constant fluid properties.
Date: June 1, 2006
Creator: Jr., Hugh M. McIlroy; Condie, Keith G.; McCreery, Glenn E.; McEligot, Donald M. & Pink, Robert J.
Partner: UNT Libraries Government Documents Department

Design of a Gas Test Loop Facility for the Advanced Test Reactor

Description: The Office of Nuclear Energy within the U.S. Department of Energy (DOE-NE) has identified the need for irradiation testing of nuclear fuels and materials, primarily in support of the Generation IV (Gen-IV) and Advanced Fuel Cycle Initiative (AFCI) programs. These fuel development programs require a unique environment to test and qualify potential reactor fuel forms. This environment should combine a high fast neutron flux with a hard neutron spectrum and high irradiation temperature. An effort is presently underway at the Idaho National Laboratory (INL) to modify a large flux trap in the Advanced Test Reactor (ATR) to accommodate such a test facility [1,2]. The Gas Test Loop (GTL) Project Conceptual Design was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Such a capability will be needed if programs such as the AFCI, Gen-IV, the Next Generation Nuclear Plant (NGNP), and space nuclear propulsion are to meet development objectives and schedules. These programs are beginning some irradiations now, but many call for fast flux testing within this decade.
Date: September 1, 2005
Creator: Wemple, C. A.
Partner: UNT Libraries Government Documents Department

Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor

Description: The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. In this project, we are investigating helium Brayton cycles for the secondary side of an indirect energy conversion system. Ultimately we will investigate the improvement of the Brayton cycle using other fluids, such as supercritical carbon dioxide. Prior to the cycle improvement study, we established a number of baseline cases for the helium indirect Brayton cycle. These cases look at both single-shaft and multiple-shaft turbomachinary. The baseline cases are based on a 250 MW thermal pebble bed HTGR. The results from this study are applicable to other reactor concepts such as a very high temperature gas-cooled reactor (VHTR), fast gas-cooled reactor (FGR), supercritical water reactor (SWR), and others. In this study, we are using the HYSYS computer code for optimization of the helium Brayton cycle. Besides the HYSYS process optimization, we performed parametric study to see the effect of important parameters on the cycle efficiency. For these parametric calculations, we use a cycle efficiency model that was developed based on the Visual Basic computer language. As a part of this study we are currently investigated single-shaft vs. multiple shaft arrangement for cycle efficiency and comparison, which will be published in the next paper.The ultimate goal of this study is to use supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency to values great than that of the helium Brayton cycle. This paper includes preliminary calculations of the steady state overall Brayton cycle efficiency based on the pebble bed reactor reference design (helium used as the working fluid) and compares those results with an initial calculation of a CO2 Brayton cycle.
Date: July 1, 2004
Creator: Oh, Chang
Partner: UNT Libraries Government Documents Department

Benchmark Development in Support of Generation-IV Reactor Validation (IRPhEP 2010 Handbook)

Description: The March 2010 edition of the International Reactor Physics Experiment Evaluation Project (IRPhEP) Handbook includes additional benchmark data that can be implemented in the validation of data and methods for Generation IV (GEN-IV) reactor designs. Evaluations supporting sodium-cooled fast reactor (SFR) efforts include the initial isothermal tests of the Fast Flux Test Facility (FFTF) at the Hanford Site, the Zero Power Physics Reactor (ZPPR) 10B and 10C experiments at the Idaho National Laboratory (INL), and the burn-up reactivity coefficient of Japan’s JOYO reactor. An assessment of Russia’s BFS-61 assemblies at the Institute of Physics and Power Engineering (IPPE) provides additional information for lead-cooled fast reactor (LFR) systems. Benchmarks in support of the very high temperature reactor (VHTR) project include evaluations of the HTR-PROTEUS experiments performed at the Paul Scherrer Institut (PSI) in Switzerland and the start-up core physics tests of Japan’s High Temperature Engineering Test Reactor. The critical configuration of the Power Burst Facility (PBF) at the INL which used ternary ceramic fuel, U(18)O2-CaO-ZrO2, is of interest for fuel cycle research and development (FCR&D) and has some similarities to “inert-matrix” fuels that are of interest in GEN-IV advanced reactor design. Two additional evaluations were revised to include additional evaluated experimental data, in support of light water reactor (LWR) and heavy water reactor (HWR) research; these include reactor physics experiments at Brazil’s IPEN/MB-01 Research Reactor Facility and the French High Flux Reactor (RHF), respectively. The IRPhEP Handbook now includes data from 45 experimental series (representing 24 reactor facilities) and represents contributions from 15 countries. These experimental measurements represent large investments of infrastructure, experience, and cost that have been evaluated and preserved as benchmarks for the validation of methods and collection of data in support of current and future reactor design and development.
Date: June 1, 2010
Creator: Bess, John D. & Briggs, J. Blair
Partner: UNT Libraries Government Documents Department

Quarterly Technical Progress Report

Description: This report presents the progress made during the first quarter of phase 2 for the project entitled ''Development and Validation of Thermal Neutron Scattering Laws from Applications and Safety Implications in Generation IV Reactor Designs.'' (B204) THIS IS NOT A FINAL REPORT
Date: December 30, 2002
Creator: Hawari, Ayman I.
Partner: UNT Libraries Government Documents Department

CFD Analysis for Flow Behavior Characteristics in the Upper Plenum during low flow/low pressure transients for the Gas Cooled Fast Reactor (GCFR)

Description: Gas coolant at low pressure exhibits poor heat transfer characteristics. This is an area of concern for the passive response targeted by the Generation IV GCFR design. For the first 24 hour period, the decay heat removal for the GCFR design is dependent on an actively powered blower, which also would reduce the temperature in the fuel during transients, before depending on the passive operation. Natural circulation cooling initiates when the blower is stopped for the final phase of the decay heat removal, as under forced convection the core decay heat is adequately cooled by the running blower. The ability of the coolant to flow in the reverse direction or having recirculation, when the blowers are off, necessitates more understanding of the flow behavior characteristics in the upper plenum. The work done here focuses primarily on the period after the blower has been turned off, as the core is adequately cooled when the blowers are running, thus there was no need to carry out the analysis for the first 24 hours. In order to understand the plume behavior for the GCFR upper plenum several cases were run, with air, helium and helium-air mixture. For each case, the FLUENT was used to characterize the steady state velocity vectors and corresponding temperature in the upper plenum under passive decay heat removal conditions. This study will provide better insight into the plume interaction in the upper plenum at low flow and low pressure conditions.
Date: May 1, 2007
Creator: Sabharwall, Piyush; Marshall, Theron; Weaver, Kevan & Gougar, Hans
Partner: UNT Libraries Government Documents Department

Annual Technical Progress Report

Description: This report describes the results generated during phase 1 of this project. During this phase, the main tools that are used to compute the thermal neutron scattering kernels for graphite, beryllium, beryllium oxide, zirconium hydride, light water, polyethylene were implemented and tested. This includes a modified NJOY/LEAPR code system, the GASKET code, and the ab initio condensed matter codes VASP and PHONON. Thermal neutron scattering kernels were generated for graphite, beryllium, beryllium oxide. In the case of graphite, new phonon spectra were examined. The first is a spectrum based on experiments performed at Oak Ridge National Laboratory in the early seventies, and the second is generated using the ab initio methods. In the case of beryllium, and beryllium oxide, a synthetic approach for generating the phonon spectra was implemented. In addition, significant progress was made on an experiment to benchmark the graphite scattering kernels was made. The simulations of this experiment show that differences on the order of a few percent, in Pu-239 detector responses, can be expected due to the use of different scattering kernels. (B204) NOT A FINAL REPORT
Date: October 2, 2002
Creator: Hawari, Ayman I.
Partner: UNT Libraries Government Documents Department

Generation IV Nuclear Energy Systems Construction Cost Reductions through the use of Virtual Environments: Task 1 Completion Report

Description: OAK B204 The objective of this project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. Specifically, this project will test the suitability of Immersive Projection Display (IPD) technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups.
Date: November 26, 2002
Creator: Whisker, V.E.; Baratta, A.J.; Shaw, T.S.; Winters, J.W.; Trikouros, N. & Hess, C.
Partner: UNT Libraries Government Documents Department