585 Matching Results

Search Results

Advanced search parameters have been applied.

Application of blade cooling to gas turbines

Description: From Summary: "A review of the status of the knowledge on turbine-blade cooling and a description of pertinent NACA investigations are presented. The current limitations in performance of uncooled and cooled engines are briefly discussed. Finally, the knowledge available and investigations to increase the knowledge on heat transfer, cooling-flow, and performance characteristics of cooled turbines are discussed."
Date: May 31, 1950
Creator: Ellerbrock, Herman H., Jr. & Schafer, Louis J., Jr.
Partner: UNT Libraries Government Documents Department

Analytical investigation of flow and heat transfer in coolant passages of free-convection liquid-cooled turbines

Description: From Introduction: "An analytical investigation of the problems arising in connection with this cooling method was conducted at the NACA Lewis laboratory and is presented herein. This analysis investigates: (1) the smallest diameter hole that can be made without endangering the circulation of the liquid, and (2) methods of improving the circulation in a small-diameter hole."
Date: July 18, 1950
Creator: Eckert, E R G & Jackson, Thomas W
Partner: UNT Libraries Government Documents Department

An analytical method for evaluating factors affecting application of transpiration cooling to gas turbine blades

Description: From Introduction: "A survey of some of the advantages and problems associated with transpiration cooling of gas-turbine engines is given in reference 1, and its is shown therein that high pressure gradients around the periphery of gas-turbine blades require that the blade wall permeability be varied around the blade periphery in order for uniform cooling to be obtained over the entire blade surface. This fact is verified in experimental investigations of transpiration-cooled turbine blades mounted in a static cascade (references 2 and 3) where it is shown that although transpiration cooling results in extremely effective cooling in the midchord region of the blade, there are very large variations in the chordwise temperature distribution because of improper permeability variation."
Date: September 8, 1952
Creator: Esgar, Jack B
Partner: UNT Libraries Government Documents Department

Thermodynamic data for the computation of the performance of exhaust-gas turbines

Description: From Summary: "Information published in chemical journals from 1933 to 1939 on the thermodynamic properties of the component gases of exhaust gases based on spectroscopic measurements were used as data for computing the ideal values of work, mass flow, nozzle velocity, power, and temperature change involved in the thermodynamic properties of a gas turbine. Curves from which this information can conveniently be obtained are given. An additional curve is included from which the heat flow may be calculated for nonadiabatic processes."
Date: October 1945
Creator: Pinkel, Benjamin & Turner, L. Richard
Partner: UNT Libraries Government Documents Department

Performance of blowdown turbine driven by exhaust gas of nine-cylinder radial engine

Description: An investigation was made of an exhaust-gas turbine having four separate nozzle boxes each covering a 90 degree arc of the nozzle diaphragm and each connected to a pair of adjacent cylinders of a nine-cylinder radial engine. This type of turbine has been called a "blowdown" turbine because it recovers the kinetic energy developed in the exhaust stacks during the blowdown period, that is the first part of the exhaust process when the piston of the reciprocating engine is nearly stationary. The purpose of the investigation was to determine whether the blow turbine could develop appreciable power without imposing any large loss in engine power arising from restriction of the engine exhaust by the turbine.
Date: 1944
Creator: Turner, L. Richard & Desmon, Leland G.
Partner: UNT Libraries Government Documents Department

Cooperative Research and Development for Advanced Microturbines Program on Advanced Integrated Microturbine System

Description: The Advanced Integrated Microturbine Systems (AIMS) project was kicked off in October of 2000 to develop the next generation microturbine system. The overall objective of the project was to develop a design for a 40% electrical efficiency microturbine system and demonstrate many of the enabling technologies. The project was initiated as a collaborative effort between several units of GE, Elliott Energy Systems, Turbo Genset, Oak Ridge National Lab and Kyocera. Since the inception of the project the partners have changed but the overall direction of the project has stayed consistent. The project began as a systems study to identify design options to achieve the ultimate goal of 40% electrical efficiency. Once the optimized analytical design was identified for the 40% system, it was determined that a 35% efficient machine would be capable of demonstrating many of the advanced technologies within the given budget and timeframe. The items that would not be experimentally demonstrated were fully produced ceramic parts. However, to understand the requirements of these ceramics, an effort was included in the project to experimentally evaluate candidate materials in representative conditions. The results from this effort would clearly identify the challenges and improvement required of these materials for the full design. Following the analytical effort, the project was dedicated to component development and testing. Each component and subsystem was designed with the overall system requirements in mind and each tested to the fullest extent possible prior to being integrated together. This method of component development and evaluation helps to minimize the technical risk of the project. Once all of the components were completed, they were assembled into the full system and experimentally evaluated.
Date: May 30, 2007
Creator: Bowman, Michael J.
Partner: UNT Libraries Government Documents Department

Materials and Component Development for Advanced Turbine Systems

Description: Hydrogen-fired and oxy-fueled land-based gas turbines currently target inlet operating temperatures of ∼1425-1760°C (∼2600-3200°F). In view of natural gas or syngas-fired engines, advancements in both materials, as well as aerothermal cooling configurations are anticipated prior to commercial operation. This paper reviews recent technical accomplishments resulting from NETL’s collaborative research efforts with the University of Pittsburgh and West Virginia University for future land-based gas turbine applications.
Date: July 1, 2008
Creator: Alvin, M.A.; Pettit, F.; Meier, G.H.; Yanar, M.; Helminiak, M.; Chyu, M. et al.
Partner: UNT Libraries Government Documents Department

Task 6.7.3 - Interfacial Mass Transport Effects in Composite Materials

Description: Advanced metal-matrix composites (MMCS) consisting of titanium-based alloys possess some unique mechanical, physical, and chemical characteristics that make them highly desirable for aircraft and gas turbine engines. Tailoring MMC properties is essential for advanced product design in materials processing. The main factors that affect materials processing and, further, the nature of a metal-ceramic interface, its structure, and morphological stability is liquid surface mass transport related to adhesional wetting (physical effect) and reactive wetting (chemical effect).' Surfaces and interfaces dominate many of the technologically important processes in composite materials such as liquid-solid sintering and joining. The objective of this work is threefold: 1) to get insight into the role of the nonstoichiometry of chemical composition in ceramic materials used as reinforcement components in MMC processing, 2) to extend previous energetic analysis of mass transport phenomena to wetting behavior between liquid metal and the quasi-solidlike skin resulting from the presolidification of liquid on nonstoichiometric solids on a scale of interatomic distance, and 3) to provide experimental verification of our concept.
Date: February 1, 1998
Creator: Nowok, Jan W.
Partner: UNT Libraries Government Documents Department

Coal-fired high performance power generating system. Draft quarterly progress report, January 1--March 31, 1995

Description: This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, ``Engineering Development of a Coal-Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of >47% thermal efficiency; NO{sub x}, SO{sub x} and particulates {le} 25% NSPS; cost {ge}65% of heat input; all solid wastes benign. A crucial aspect of the authors design is the integration of the gas turbine requirements with the HITAF output and steam cycle requirements. In order to take full advantage of modern highly efficient aeroderivative gas turbines they have carried out a large number of cycle calculations to optimize their commercial plant designs for both greenfield and repowering applications.
Date: October 1, 1995
Partner: UNT Libraries Government Documents Department

The U.S. Department of Energy`s advanced turbine systems program

Description: Advanced Turbine Systems (ATS) are poised to capture the majority of new electric power generation capacity well into the next century. US Department of Energy (DOE) programs supporting the development of ATS technology will enable gas turbine manufacturers to provide ATS systems to the commercial marketplace at the turn of the next century. A progress report on the ATS Program will he presented in this paper. The technical challenges, advanced critical technology requirements, and system configurations meeting the goals of the program will be discussed. Progress has been made in the are as of materials, heat transfer, aerodynamics, and combustion. Applied research conducted by universities, industry, and Government has resulted in advanced designs and power cycle configurations to develop an ATS which operates on natural gas, coal, and biomass fuels. Details on the ATS Program research, development, and technology validation and readiness activities will be presented. The future direction of the program and relationship to other Government programs will be discussed in this paper.
Date: June 1, 1998
Creator: Layne, A.W. & Layne, P.W.
Partner: UNT Libraries Government Documents Department

Advanced Turbine Systems (ATS) program conceptual design and product development

Description: Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.
Date: August 31, 1996
Partner: UNT Libraries Government Documents Department

DoE Advanced Ceramic Microturbine

Description: In July 2001, Ingersoll-Rand began work on this program. Its objective was to introduce ceramic hot section components into the IR family of microturbines to permit higher operating temperatures and hence improved efficiency. The IR microturbine product line combines a novel application of industrial turbocharger equipment, our commercially successful recuperator, and proven industrial gas turbine design practices. The objective of the joint development program is to combine the high production success of the Si{sub 3}N{sub 4} turbocharger rotors, largely from Japan, with the IR turbocharger-based microturbines. The IR 'Ceramic Microturbine' (CMT) program has been configured to use the most practical ceramic rotor, considering size, geometry, proven manufacturing methods, and physical material limitations Performance predictions indicate that 36% LHV electric conversion efficiency could be attained at a Turbine Inlet Temperature (TIT) of nominally 1000 C. The initial 72kW engine is being designed to have comparable life and costs to our current product The package power rating is expandable to 100kW with this equipment by slightly increasing pressure ratio flow and TIT. This program was initially planned as five major tasks In Task 1 a comprehensive analysis of the state of the art ceramics and their applicability to microturbines was performed Milestone I was achieved with the joint DoE/IR decision to concentrate on our 70kW microturbine, with elevated turbine inlet temperature and pressure ratio,. This preserved the ability of the engine to utilize the standard IR recuperator and the majority of the microturbine subassemblies, A commercialization report, projecting the market size, was also completed as part of this task. Task 2's detailed design of the special hot-section components has been completed,. The two critical milestones, No.3 and No.4, associated with the detailed design of the monolithic silicon nitride turbine rotor and the release of the purchase order for this critical component were ...
Date: May 31, 2004
Creator: Systems, IR Energy
Partner: UNT Libraries Government Documents Department

Rapid Deployment of Rich Catalytic Combustion

Description: The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.
Date: June 10, 2004
Creator: Tuthill, Richard S.
Partner: UNT Libraries Government Documents Department

Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems

Description: Recuperators have been identified as key components of advanced gas turbines systems that achieve a measure of improvement in operating efficiency and lead the field in achieving very low emissions. Every gas turbine manufacturer that is studying, developing, or commercializing advanced recuperated gas turbine cycles requests that recuperators operate at higher temperature without a reduction in design life and must cost less. The Solar Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems Program is directed towards meeting the future requirements of advanced gas turbine systems by the following: (1) The development of advanced alloys that will allow recuperator inlet exhaust gas temperatures to increase without significant cost increase. (2) Further characterization of the creep and oxidation (dry and humid air) properties of nickel alloy foils (less than 0.13 mm thick) to allow the economical use of these materials. (3) Increasing the use of advanced robotic systems and advanced in-process statistical measurement systems.
Date: January 17, 2007
Creator: Escola, George
Partner: UNT Libraries Government Documents Department

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

Description: The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.
Date: July 1, 2001
Creator: Golan, Lawrence P.
Partner: UNT Libraries Government Documents Department

Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines

Description: Laboratory experiments have been conducted to investigate the fuel effects on the turbulent premixed flames produced by a gas turbine low-swirl injector (LSI). The lean-blow off limits and flame emissions for seven diluted and undiluted hydrocarbon and hydrogen fuels show that the LSI is capable of supporting stable flames that emit < 5 ppm NO{sub x} ({at} 15% O{sub 2}). Analysis of the velocity statistics shows that the non-reacting and reacting flowfields of the LSI exhibit similarity features. The turbulent flame speeds, S{sub T}, for the hydrocarbon fuels are consistent with those of methane/air flames and correlate linearly with turbulence intensity. The similarity feature and linear S{sub T} correlation provide further support of an analytical model that explains why the LSI flame position does not change with flow velocity. The results also show that the LSI does not need to undergo significant alteration to operate with the hydrocarbon fuels but needs further studies for adaptation to burn diluted H{sub 2} fuels.
Date: December 3, 2007
Creator: Littlejohn, David; Littlejohn, David & Cheng, R.K.
Partner: UNT Libraries Government Documents Department

Lean Premixed Combustion/Active Control

Description: An experimental comparison between two contrasting fuel-air swirlers for industrial gas turbine applications was undertaken at the United Technologies Research Center. The first, termed an Aerodynamic nozzle, relied on the prevailing aerodynamic forces to stabilize the downstream combustion zone. The second configuration relied on a conventional bluff plate for combustion stability and was hence named a Bluff-Body nozzle. Performance mapping over the power curve revealed the acoustic superiority of the Bluff-Body nozzle. Two dimensional Rayleigh indices calculated from CCD images identified larger acoustic driving zones associated with the Aerodynamic nozzle relative to its bluff counterpart. The Bluff-Body's success is due to increased flame stabilization (superior anchoring ability) which reduced flame motion and thermal/acoustic coupling.
Date: February 1, 2000
Creator: Seery, D. J.
Partner: UNT Libraries Government Documents Department

Ceramic vane demonstration in an industrial turbine

Description: A DOE program with Allison Engine Co. will demonstrate ceramic vanes in an industrial turbine. First-stage ceramic vanes and metallic mounts are to be designed, fabricated, and operated in a short-term engine test (up to 50 hr). The vanes and mounts will then be retrofitted into an existing turbine for operation at a commercial site for up to 8000 hr. They have been designed. Thermal and stress analyses of the vanes have calculated acceptable fast fracture stress levels and probabilities of survival > 99.99% for turbine continuous power and emergency shutdown (thermal shock) conditions. Max calculated steady-state stress is 169 MPa at 1182 C, so currently available ceramics appear to provide acceptable fast fracture strengths for use in industrial turbines. Long-term materials test will evaluate the lifetimes and retained strength of ceramics at stress and temperature levels in the range calculated from the ceramic vane analyses. Results of these tests will support on which vane material will be used in the long duration turbine demonstration. A successful demonstration could provide a basis for incorporating first-stage ceramic vanes into current generation industrial turbines and also the introduction of ceramic airfoils into downstream rows of future high temperature Advanced Turbine System (ATS) engines.
Date: April 1, 1997
Creator: Wenglarz, R.A.; Calcuttawala, S.M. & Pope, J.E.
Partner: UNT Libraries Government Documents Department

Combustion oscillation control

Description: Premixing of fuel and air can avoid high temperatures which produce thermal NOx, but oscillating combustion must be eliminated. Combustion oscillations can also occur in Integrated Gasification Combined Cycle turbines. As an alternative to design or operating modifications, METC is investigating active combustion control (ACC) to eliminate oscillations; ACC uses repeated adjustment of some combustion parameter to control the variation in heat release that drives oscillations.
Date: December 31, 1996
Creator: Richards, G.A. & Janus, M.C.
Partner: UNT Libraries Government Documents Department