67 Matching Results

Search Results

Advanced search parameters have been applied.

Closure Welding Design and Justification for Canister S00645 (Bent Flange)

Description: This report provides the design basis and justification for a closure welding technique using the manual Gas Tungsten Are Welding (GTAW) process. Other aspects affecting closure of Canister S00645, e.g., shielding, facility and administrative requirements, etc., are addressed elsewhere.
Date: December 21, 1998
Creator: Cannell, G.R.
Partner: UNT Libraries Government Documents Department

Narrow groove welding gas diffuser assembly and welding torch

Description: A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.
Date: February 4, 2000
Creator: Rooney, Stephen J.
Partner: UNT Libraries Government Documents Department

Combining Noise Factors and Process Parameters in a Response Surface

Description: This presentation covers the strategy and analysis of an experiment to characterize a gas tungsten arc welding process. The experiment combined four uncontrolled noise factors and four controlled process parameters. A nontraditional response surface design was employed. Multiple responses were modeled. Optimal settings for the process parameters to successfully weld the widest range of the pertinent product features were identified. Thus, the process was made ''robust'' against ''noise'' factors. Comparisons are made between the experimental and analytical approach taken versus the Taguchi style of experimentation and analysis. This comparison is mainly done with respect to the information gained, such as product design criteria, incoming material specifications, and process adjustments for nonconforming material.
Date: March 19, 1998
Creator: Wyckoff, J.J.
Partner: UNT Libraries Government Documents Department

Weldability of Fe-Al-Cr Overlay Coatings for CorrosionProtection in Oxidizing/Sulfidizing Environments

Description: The effect of chromium additions to the weldability of Fe-Al based overlay claddings are currently being investigated for the corrosion protection of boiler tubes in Low NOx furnaces. The primary objective of this research is to identify weldable (crack-free) Fe-Al-Cr weld overlay coating compositions that provide corrosion resistance over long exposure times. During the current project phase, preliminary corrosion testing was conducted on several ternary Fe-Al-Cr alloys in two types of gaseous corrosion environments. These long-term corrosion tests were used to develop a target weld composition matrix and serve as a base line for future corrosion tests. Preliminary Fe-Al based welds with various aluminum concentrations and one ternary Fe-Al-Cr weld overlay were successfully deposited using a Gas Tungsten Arc Welding (GTAW) process and cracking susceptibility was evaluated on these coatings.
Date: March 4, 2003
Creator: Regina, JR
Partner: UNT Libraries Government Documents Department

Modeling of residual stresses by HY-100 weldments

Description: Residual stress distribution in a HY-100 steel disk, induced by GTA spot welding, was analyzed by finite element (FE) formulations and measured by neutron diffraction (ND). Computations used temperature- dependent thermophysical and mechanical properties. FE model predictions are in good agreement with ND data in far heat affected zone (HAZ) and in base metal. Predicted residual stresses in fusion zone and near HAZ were higher than those measured by ND. This discrepancy was attributed to microstructural changes and associated material properties in the HAZ and fusion zone due to phase transformations during the weld thermal cycle.
Date: February 1, 1997
Creator: Zacharia, T.; Taljat, B. & Radhakrishnan, B.
Partner: UNT Libraries Government Documents Department

Fiber optic sensor: Feedback control design and implementation

Description: Digital feedback control of Gas Tungsten Arc Welding (GTAW) has been demonstrated on a tube sample of stainless steel and titanium alloy. A fiber optic sensor returns a signal proportional to backside radiance from the workpiece; that signal is used by the controller to compute a compensation weld current. The controller executes 10 times a second on an Intel 486 chip. For travel speeds of 3 to 6 inches per minute and thicknesses between 0.025 and 0.10 inches, constant backside bead width was maintained within 0.02 inches, from startup to tie-in.
Date: July 1, 1997
Creator: Tung, D.; Bertram, L.; Hillaire, R.; Anderson, S.; Leonard, S. & Marburger, S.
Partner: UNT Libraries Government Documents Department

Analysis of ripple formation in single crystal spot welds

Description: Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 {micro}m) and spacing (typically {approximately} 60 {micro}m) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f{sub 0} given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v{sub s}/f{sub 0}, where v{sub s} is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.
Date: October 1, 1997
Creator: Rappaz, M.; Corrigan, D. & Boatner, L. A.
Partner: UNT Libraries Government Documents Department

Modeling solute redistribution and microstructural development in fusion welds of multi-component alloys

Description: Solute redistribution and microstructural evolution have been modeled for gas tungsten arc fusion welds in experimental Ni base superalloys. The multi-component alloys were modeled as a pseudo-ternary {gamma}-Nb-C system. The variation in fraction liquid and liquid composition during the primary L {r{underscore}arrow} {gamma} and eutectic type L {r{underscore}arrow} ({gamma} + NbC) stages of solidification were calculated for conditions of negligible Nb diffusion and infinitely rapid C diffusion in the solid phase. Input parameters were estimated by using the Thermo-Calc NiFe Alloy data base and compared to experimentally determined solidification parameters. The solidification model results provide useful information for qualitatively interpreting the influence of alloy composition on weld microstructure. The quantitative comparisons indicate that, for the alloy system evaluated, the thermodynamic database provides sufficiently accurate values for the distribution coefficients of Nb and C. The calculated position of the {gamma}-NbC two-fold saturation line produces inaccurate results when used as inputs for the model, indicating further refinement to the database is needed for quantitative estimates.
Date: December 15, 1999
Creator: Dupont, J.N.; Robino, C.V. & Newbury, B.D.
Partner: UNT Libraries Government Documents Department

Residual Stress Testing of Outer 3013 Containers

Description: A Gas Tungsten Arc Welded (GTAW) outer 3013 container and a laser welded outer 3013 container have been tested for residual stresses according to the American Society for Testing Materials (ASTM) Standard G-36-94 [1]. This ASTM standard describes a procedure for conducting stress-corrosion cracking tests in boiling magnesium chloride (MgCl2) solution. Container sections in both the as-fabricated condition as well as the closure welded condition were evaluated. Significantly large residual stresses were observed in the bottom half of the as-fabricated container, a result of the base to can fabrication weld because through wall cracks were observed perpendicular to the weld. This observation indicates that regardless of the closure weld technique, sufficient residual stresses exist in the as-fabricated container to provide the stress necessary for stress corrosion cracking of the container, at the base fabrication weld. Additionally, sufficiently high residual stresses were observed in both the lid and the body of the GTAW as well as the laser closure welded containers. The stresses are oriented perpendicular to the closure weld in both the container lid and the container body. Although the boiling MgCl2 test is not a quantitative test, a comparison of the test results from the closure welds shows that there are noticeably more through wall cracks in the laser closure welded container than in the GTAW closure welded container.
Date: February 12, 2004
Creator: Dunn, K.
Partner: UNT Libraries Government Documents Department


Description: Fluor engineers developed a Gas Tungsten Arc Welding (GTAW) technique and parameters, demonstrated requisite weld quality and successfully closure-welded packaged spent nuclear fuel (SNF) overpacks at the Hanford Site. This paper reviews weld development and qualification activities associated with the overpack closure-welding and provides a summary of the production campaign. The primary requirement of the closure weld is to provide leaktight confinement of the packaged material against release to the environment during interim storage (40-year design term). Required weld quality, in this case, was established through up-front development and qualification, and then verification of parameter compliance during production welding. This approach was implemented to allow for a simpler overpack design and more efficient production operations than possible with approaches using routine post-weld testing and nondestructive examination (NDE). . A series of welding trials were conducted to establish the desired welding technique and parameters. Qualification of the process included statistical evaluation and American Society of Mechanical Engineers (ASME) Section IX testing. In addition, pull testing with a weighted mockup, and thermal calculation/physical testing to identify the maximum temperature the packaged contents would be subject to during welding, was performed. Thirteen overpacks were successfully packaged and placed into interim storage. The closure-welding development activities (including pull testing and thermal analysis) provided the needed confidence that the packaged SNF overpacks could be safely handled and placed into interim storage, and remain leaktight for the duration of the storage term.
Date: November 7, 2007
Creator: GR, CANNELL
Partner: UNT Libraries Government Documents Department


Description: Excess plutonium materials in the DOE complex are packaged and stored in accordance with DOE-STD-3013. This standard specifies requirements for the stabilization of such materials and subsequent packaging in dual nested seal-welded containers. Austenitic stainless steels have been selected for container fabrication. The inner 3013 container provides contamination control while the outer 3013 container is the primary containment vessel and is the focus of this paper. Each packaging site chose a process for seal welding the outer 3013 containers in accordance with its needs and expertise. The two processes chosen for weld closure were laser beam welding (LBW) and gas tungsten arc welding (GTAW). Following development efforts, each system was qualified in accordance with DOE-STD-3013 prior to production use. The 3013 outer container closure weld joint was designed to accommodate the characteristics of a laser weld. This aspect of the joint design necessitated some innovative process and equipment considerations in the application of the GTAW process. Details of the weld requirements and the development processes are presented and several potential enhancements for the GTAW system are described.
Date: November 10, 2009
Creator: Daugherty, W.; Howard, S.; Peterson, K. & Stokes, M.
Partner: UNT Libraries Government Documents Department

Lamb-wave inspection of welds in stainless steel tubes

Description: An ultrasonic Lamb-wave inspection technique was developed for use in inspecting the gas tungsten arc (GTA) welds in small diameter stainless steel tubes for lack of penetration. The particular technique was employed because of the ability to introduce the sound into the material a distance from the weld. A conventional shear-wave technique was tried without success. (auth)
Date: December 26, 1973
Creator: Schrick, G. W.
Partner: UNT Libraries Government Documents Department

A Study of Weld Porosity in Containers for the Storage of Plutonium Containing Materials

Description: An autogenous GTAW closure weld was developed for the Department of Energy's (DOE) primary container for the storage of plutonium-bearing materials. The occurrence of porosity at the tie-in point of the closure weld was investigated. The primary cause of the porosity was linked to the geometry at the root of the closure weld joint. This paper describes the mechanistic model that was developed to describe and predict the porosity.
Date: April 21, 2003
Creator: Daugherty, W.L.
Partner: UNT Libraries Government Documents Department

Narrow groove gas tungsten arc welding of ASTM A508 Class 4 steel for improved toughness properties

Description: Welding of heavy section steel has traditionally used the automatic submerged arc welding (ASAW) process because of the high deposition rates achievable. However, the properties, particularly fracture toughness, of the weld are often inferior when compared to base material. This project evaluated the use of narrow groove gas tungsten arc welding (GTAW) to improve weld material properties. The welding procedures were developed for ASTM A508 Class 4 base material using a 1% Ni filler material complying to AWS Specification A.23-90-EF3-F3-N. A narrow groove joint preparation was used in conjunction with the GTAW process so competitive fabrication rates could be achieved when compared to the ASAW process. Weld procedures were developed to refine weld substructure to achieve better mechanical properties. Two heaters of weld wire were used to examine the effects of minor filler metal chemistry differences on weld mechanical properties. Extensive metallographic evaluations showed excellent weld quality with a refined microstructure. Chemical analysis of the weld metal showed minimal weld dilution by the base metal. Mechanical testing included bend and tensile tests to ensure weld quality and strength. A Charpy impact energy curve versus temperature and fracture toughness curve versus temperature were developed for each weld wire heat. Results of fracture toughness and Charpy impact testing indicated an improved transition temperature closer to that of the base material properties.
Date: April 1, 1997
Creator: Penik, M.A. Jr.
Partner: UNT Libraries Government Documents Department

Solidification behavior and structure of Al-Cu alloy welds

Description: The microsegregation behavior of electron beam (EB) and gas tungsten arc (GTA) welds of Al-Cu alloys covering a range from 0.19 to 7.74 wt% Cu were characterized for dendrite core concentrations and fraction eutectic solidification. Although a single weld speed of 12.7 mm/sec was used, some differences were observed in the segregation behavior of the two weld types. The microsegregation behavior was also modeled using a finite differences technique considering dendrite tip and eutectic undercooling and solid state diffusion. Fairly good agreement was observed between measured and calculated segregation behavior although differences between the two weld types could not be completely accounted for. The concept of dendrite tip undercooling was used to explain the formation of a single through thickness centerline grain in the higher alloy content GTA welds.
Date: September 1, 1997
Creator: Brooks, J.A.; Li, M. & Yang, N.C.Y.
Partner: UNT Libraries Government Documents Department

Processing and structure of in situ Fe-Al alloys produced by gas tungsten arc welding

Description: Iron aluminide weld overlays are being investigated for corrosion and erosion protection of boiler tubes in low NOx burners. The primary objective of the research is to identify overlay compositions which can be deposited in a crack-free condition and provide corrosion protection in moderately reducing environments. In the current phase of work, Fe-Al alloy weld overlays were produced by depositing commercially pure aluminum wire on to low carbon steel substrates using Gas Tungsten Arc Welding. A systematic variation of the wire feed speed and current, two major factors affecting dilution, resulted in a variation in aluminum contents of the welds ranging from 3--42 wt% aluminum. The aluminum content was observed to increase with wire feed speed and a decrease in the current. The aluminum content was also found to affect the cracking susceptibility of the overlays. At 10wt% aluminum, few to no cracks were observed in the deposits. Above this value, cracking was prevalent throughout the weld. In addition, two types of microstructures were found correlating to different concentrations of aluminum. A homogeneous matrix with second phase particles consisting of coarse columnar grains was found for low aluminum concentrations. With higher aluminum contents, a two-phase constituent was observed to surround primary dendrites growing from the substrate. The transition of the microstructures occurred between 24 and 32 wt% Al.
Date: February 14, 1997
Creator: Banovic, S.W.; DuPont, J.N. & Marder, A.R.
Partner: UNT Libraries Government Documents Department

Welding Behavior of Free Machining Stainless Steel

Description: The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metal at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.
Date: July 24, 2000
Partner: UNT Libraries Government Documents Department

Welding Metallurgy of Alloy HR-160

Description: The solidification behavior and resultant solidification cracking susceptibility of autogenous gas tungsten arc fusion welds in alloy HR-160 was investigated by Varestraint testing, differential thermal analysis, and various microstructural characterization techniques. The alloy exhibited a liquidus temperature of 1387 {deg}C and initiated solidification by a primary L - {gamma} reaction in which Ni, Si, and Ti segregated to the interdendritic liquid and Co segregated to the {gamma} dendrite cores. Chromium exhibited no preference for segregation to the solid or liquid phase during solidification. Solidification terminated at {approx} 1162 {deg}C by a eutectic-type L - [{gamma}+ (Ni,Co){sub 16}(Ti,Cr){sub 6}Si{sub 7}] reaction. The (Ni,Co){sub 16}(Ti,Cr){sub 6}Si{sub 7} phase is found to be analogous to the G phase which forms in the Ni-Ti-Si and Co-Ti-Si ternary systems, and similarities are found to exist between the solidification behavior of this commercial multicomponent alloy and the simple Ni-Si and Ni-Ti binary systems. Reasonable agreement is obtained between the calculated and measured volume percent of the [{gamma} +(Ni,Co){sub l6}(Ti,Cr){sub 6}Si{sub 7}] eutectic-typr constituent with the Scheil equation using experimentally determined k values for Si and Ti from electron microprobe data. The alloy exhibited a very high susceptibility to solidification cracking in the Varestraint test. This is attributed to a large solidification temperature range of 225 {deg}C and the presence of 2 to 5 vol% solute rich interdendritic liquid which preferentially wets the grain boundaries and interdendritic regions.
Date: May 28, 1999
Creator: DuPont, J.N.; Michael, J.R. & Newbury, B.D.
Partner: UNT Libraries Government Documents Department

Modeling of thermomechanical conditions in Sigmajig weldability test

Description: A finite element model has been developed to evaluate quantitatively the thermomechanical conditions for weld metal solidification cracking of a nickel based superalloy single-crystal in a laboratory weldability test, namely, the Sigmajig test. The effects of weld pool solidification on the thermal and mechanical behaviors of the specimen were considered. Stress-temperature-location diagrams were constructed to reveal the complex local stress development at the trailing edge of the weld pool. The calculated local stress in the solidification temperature range is used to explain the experimentally observed initiation of solidification cracking of the single-crystal under different welding and loading conditions, based on the material resistance versus the mechanical driving force.
Date: August 1, 1995
Creator: Feng, Z.; Zacharia, T. & David, S.A.
Partner: UNT Libraries Government Documents Department

An experimental method for investigating phase transformations in the heat affected zone of welds using synchrotron radiation

Description: Although welding is an established technology used in many industrial settings, it is least understand terms of the phases that actually exist, the variation of their spatial disposition with time, and the rate of transformation from one phase to another at various thermal coordinates in the vicinity of the weld. With the availability of high flux and, more recently, high brightness synchrotron x-radiation sources, a number of diffraction and spectroscopic methods have been developed for structural characterization with improved spatial and temporal resolutions to enable in-situ measurements of phases under extreme temperature, pressure and other processing conditions not readily accessible with conventional sources. This paper describes the application of spatially resolved x-ray diffraction (SRXRD) for in-situ investigations of phase transformations in the heat affected zone (HAZ) of fusion welds. Results are presented for gas tungsten (GTA) welds in commercially pure titanium that show the existence of the high temperature bcc {beta}-phase in a 3.3 {plus_minus} 0.3 mm wide HA band adjacent to the liquid weld pool. Phase concentration profiles derived from the SRXRD data further show the co-existence of both the low temperature hcp ({alpha}-phase and the {beta}-phase in the partially, transformed region of the HA. These results represent the first direct observations of solid state phase transformations and mapping of phase boundaries in fusion welds. SRXRD experiments of this type are needed as experimental input for modeling of kinetics of phase transformations and microstructural evolution under the highly non-isothermal conditions produced during welding.
Date: May 26, 1995
Creator: Elmer, J.W.; Wong, J.; Froba, M.; Waide, P.A. & Larson, E.M.
Partner: UNT Libraries Government Documents Department

Fusion Welding of AerMet 100 Alloy

Description: A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.
Date: August 1, 1999
Partner: UNT Libraries Government Documents Department