79 Matching Results

Search Results

Advanced search parameters have been applied.


Description: Validation of numerical simulations, Le., the quantitative comparison of calculated results with experimental data, is an essential practice in computational fluid dynamics. These comparisons are particularly difficult in the field of shock-accelerated fluid mixing, which can be dominated by irregular structures induced by flow instabilities. Such flows exhibit non-deterministic behavior, which eliminates my direct way to establish correspondence between experimental data and numerical simulation. We examine the detailed structures of mixing experiments and their simulation for Richtmyer-Meshkov (RM) experiments of Prestridge et al., Tomkins et al., and Jacobs. Numerical simulations of these experiments will be performed with several different high-resolution shock capturing schemes, including a variety of finite volume Godunov methods. We compare the experimental data for cOnfigurations of one and two diffuse cylinders of SF6 in air with numerical results using several multiscale metrics: fractal analysis, continuous wavelet transforms, and generalized correlations; these measures complement traditional metrics such as PDFs, mix fractions, and integral mixing widths.
Date: January 1, 2001
Creator: Rider, William; Kamm, J. R. (James R.); Tomkins, C. D. (Chris D.); Prestridge, K. P. (Katherine P.); Rightley, P. M. (Paul M.); Benjamin, R. F. (Robert F.) et al.
Partner: UNT Libraries Government Documents Department


Description: The burst test is used to assess the material performance of tritium reservoirs in the surveillance program in which reservoirs have been in service for extended periods of time. A materials system model and finite element procedure were developed under a Savannah River Site Plant-Directed Research and Development (PDRD) program to predict the structural response under a full range of loading and aged material conditions of the reservoir. The results show that the predicted burst pressure and volume ductility are in good agreement with the actual burst test results for the unexposed units. The material tensile properties used in the calculations were obtained from a curved tensile specimen harvested from a companion reservoir by Electric Discharge Machining (EDM). In the absence of exposed and aged material tensile data, literature data were used for demonstrating the methodology in terms of the helium-3 concentration in the metal and the depth of penetration in the reservoir sidewall. It can be shown that the volume ductility decreases significantly with the presence of tritium and its decay product, helium-3, in the metal, as was observed in the laboratory-controlled burst tests. The model and analytical procedure provides a predictive tool for reservoir structural integrity under aging conditions. It is recommended that benchmark tests and analysis for aged materials be performed. The methodology can be augmented to predict performance for reservoir with flaws.
Date: November 10, 2005
Creator: Lam, P.S. & Morgan, M.J
Partner: UNT Libraries Government Documents Department

Methodology for development of treatment and disposal options for compressed gas cylinders contaminated with radionuclides

Description: Compressed gas cylinders contaminated with radionuclides are a unique waste item that may become a Resource Conservation and Recovery Act (RCRA) hazardous waste through two mechanisms: either the contents of the compressed gas cylinder are regulated under RCRA or the internal pressure of the compressed gas cylinder gives it the characteristic of reactivity. The characteristic of reactivity is defined by RCRA in 40 Code of Federal Regulations (CFR) 261.23(a)(6) as a waste that is capable of detonation or explosive reaction if it is subjected to a strong initiating source or heated under confinement. In a letter dated September 1, 1989, the U.S. Environmental Protection Agency (EPA) Office of Solid Waste referred the interpretation of the definition of reactivity to the EPA Regional Office and/or the state (if the state has primacy). The Tennessee Department of Environment and Conservation (TDEC) has made the interpretation that to meet the definition of reactive as specified in 40 CFR 261.23(a)(6) there must be a chemical reaction that causes the explosion or detonation. This interpretation limits the compressed gas cylinders that have to be treated as RCRA hazardous waste to those that have other RCRA characteristic codes or contain listed wastes. The difficulty in treating compressed gas cylinders is heightened in the case of radiologically contaminated compressed gas cylinders because the internal pressure and possible hazardous constituents must be treated in most cases before decontamination of the cylinder is possible. Special procedures must be followed to ensure that radiological contamination is not transferred to clean gas cylinders or released into the environment.
Date: June 1, 1996
Creator: Conley, T.B.; Czor, K.R. & Wright, W.T.
Partner: UNT Libraries Government Documents Department

Functional test procedure, Fifth Wheel: SS-R42351, Issue D

Description: This report describes the equipment required for initial assembly/maintenance and inspection/resetting of the Fifth Wheel system. It also gives a step-by-step procedure for initial assembly/maintenance inspection and procedures for resetting the system and Eager-Pac installation. The Fifth Wheel system is associated with a tractor-type vehicle used for materials handling.
Date: July 12, 1994
Partner: UNT Libraries Government Documents Department

Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders

Description: Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some ...
Date: October 1, 1996
Creator: Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L. & Kelley, D.K.
Partner: UNT Libraries Government Documents Department

[Inspection of gas cylinders in storage at TA-54, Area L]. Volume 1, Final report

Description: ERC sampled, analyzed, and recontainerized when necessary gas cylinders containing various chemicals in storage at Los Alamos TA-54 Area L. A vapor containment structure was erected. A total of 179 cylinders was processed; 39 were repackaged; and 55 were decommissioned. This report summarizes the operation; this is Volume 1 of five volumes.
Date: June 23, 1994
Partner: UNT Libraries Government Documents Department

Residual Stress Measurements in Side Bonded Resistance Welds

Description: Resistance upset welding is used to attach small diameter machined tubes to small gas vessels. Recently there has been interest in determining the level of residual stresses caused by this attachment method and its influence on environmental interactions. A test program was initiated to determine the residual stresses present due to welding using the nominal weld parameters and varying the interference between the foot and the counter bore. In this paper, the residual stress measurement technique is described, the welding conditions are provided, and the residual stress due to welding at the nominal conditions are presented.
Date: April 18, 2005
Partner: UNT Libraries Government Documents Department

Closure Report for Corrective Action Unit 350: Miscellaneous Housekeeping Sites, Nevada Test Site, Nevada

Description: This Closure Report documents the closure activities conducted for Corrective Action Unit (CAU) 350: Miscellaneous Housekeeping sites. CAU 350 is listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996) and consists of the following eight Corrective Action Sites (CASs) located in Areas 12 and 15 of the Nevada Test Site (NTS): CAS 12-26-01, Lead Shot; CAS 15-22-04, Drums(2); CAS 15-22-06, Drums(10); CAS 15-22-16, Drums(3); CAS 15-22-22, Hydrocarbon Impacted Soil; CAS 15-22-29, Drums(2); CAS 15-24-07, Batteries; and CAS 15-99-02, Gas Cylinder. Closure activities consisted of closing each CAS by removing debris and/or material, disposing of the generated waste, and verifying that each site was clean-closed by visual inspection and/or laboratory analysis of soil samples.
Date: May 1, 2003
Creator: Jackson, R. B.
Partner: UNT Libraries Government Documents Department

Criticality Safety Review of 2 1/2-, 10-, and 14-Ton UF(Sub 6) Cylinders

Description: Currently, UF{sub 6} cylinders designed to contain 2 1/2 tons of UF{sub 6} are classified as Fissile Class II packages with a transport index (TI) of 5 for the purpose of transportation. The 10-ton UF{sub 6} cylinders are classified as Fissile Class I with no TI assigned for transportation. The 14-ton cylinders, although not certified for transport with enrichments greater than 1 wt % because they have no approved overpack, can be used in on-site operations for enrichments greater than 1 wt %. The maximum 235U enrichments for these cylinders are 5.0 wt % for the 2 1/2-ton cylinder and 4.5 wt % for the 10- and 14-ton cylinders. This work reviews the suitability for reclassification of the 2 1/2-ton UF{sub 6} packages as Fissile Class I with a maximum {sup 235}U enrichment of 5 wt %. Additionally, the 10- and 14-ton cylinders are reviewed to address a change in maximum {sup 235}U enrichment from 4.5 to 5 wt %. Based on this evaluation, the 2 1/2-ton UF{sub 6} cylinders meet the 10 CFR.71 criteria for Fissile Class I packages, and no TI is needed for criticality safety purposes; however, a TI may be required based on radiation from the packages. Similarly, the 10- and 14-ton UF{sub 6} packages appear acceptable for a maximum enrichment rating change to 5 wt % {sup 235}U.
Date: January 1, 1991
Creator: Broadhead, B.L.
Partner: UNT Libraries Government Documents Department

Safety analysis report for packaging: the ORNL gas-cylinder fire and impact shield

Description: The ORNL gas-cylinder fire and impact shield was designed and fabricated at the Oak Ridge Gaseous Diffusion Plant for the transport of cylinders filled with radioactive gases. The shield was evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported, and the results are reported herein. Computational and test procedures were used to determine the structural integrity and thermal behavior of the cask relative to the general standards for normal conditions of transport and the standards for hypothetical accident conditions. Results of the evaluation demonstrate that the container is in compliance with the applicable regulations.
Date: April 1, 1983
Creator: Evans, J.H.; Levine, D.L.; Eversole, R.E. & Mouring, R.W.
Partner: UNT Libraries Government Documents Department

Aerosol can puncture device test report

Description: This test report documents the evaluation of an aerosol can puncture device to replace a system currently identified for use in the WRAP-1 facility. The new system is based upon a commercially available puncture device, as recommended by WHC Fire Protection. With modifications found necessary through the testing program, the Aerosol Can Puncture Device was found able to puncture and drain aerosol cans without incident. Modifications include the addition of a secondary collection bottle and the modification of the can puncture needle. In the course of testing, a variety of absorbents were tested to determine their performance in immobilizing drained fluids. The visibility of the puncture with Non-Destructive Examination techniques were also reviewed.
Date: October 1, 1994
Creator: Leist, K. J.
Partner: UNT Libraries Government Documents Department

Reotemp Pressure Indicator Local Pressure Indication in the 15 PSIG SCHe System

Description: These 0-30 psig range pressure indicators are located in the SCHe supply piping after PCV 5*23 and before PCV 5*27. The pressure indicators provide information on the pressure being maintained between the two PCVs. This design is used for each of the SCHe supply lines.
Date: September 3, 2000
Creator: Miska, C. R.
Partner: UNT Libraries Government Documents Department

Processing of mixed-waste compressed-gas cylinders on the Oak Ridge Reservation

Description: To comply with restrictions on the storage of old compressed gas cylinders, the environmental management organization of Lockheed Martin Energy Systems must dispose of several thousand kilograms of compressed gases stored on the Oak Ridge Reservation (ORR) because the cylinders cannot be taken off-site for disposal in their current configuration. In the ORR Site Treatment Plan, a milestone is cited that requires repackaging and shipment off-site of 21 cylinders by September 30, 1997. A project was undertaken to first evaluate and then either recontainerize or neutralize these cylinders using a transportable compressed gas recontainerization skid (TCGRS), which was developed by Integrated Environmental Services of Atlanta. The transportable system can: (1) sample, analyze, and identify at the site the chemical and radiological content of each cylinder, even those with inoperable valves; (2) breach cylinders, when necessary, to release their contents into a containment chamber; and (3) either neutralize the gas or liquid contents within the containment chamber or transfer the gas or liquids to a new cylinder. The old cylinders and cylinder fragments were disposed of and the gases neutralized or transferred to new cylinders for transportation off-site for disposal. The entire operation to process the 21 cylinders took place in only 5 days once the system was approved for operation. The system performed as expected and can now be used to process the potentially thousands of more cylinders located across the US Department of Energy (DOE) complex that have not yet been declared surplus.
Date: January 1, 1998
Creator: Morris, M.I.; Conley, T.B. & Osborne-Lee, I.W.
Partner: UNT Libraries Government Documents Department

FIREPLUME model for plume dispersion from fires: Application to uranium hexafluoride cylinder fires

Description: This report provides basic documentation of the FIREPLUME model and discusses its application to the prediction of health impacts resulting from releases of uranium hexafluoride (UF{sub 6}) in fires. The model application outlined in this report was conducted for the Draft Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted UF{sub 6}. The FIREPLUME model is an advanced stochastic model for atmospheric plume dispersion that predicts the downwind consequences of a release of toxic materials from an explosion or a fire. The model is based on the nonbuoyant atmospheric dispersion model MCLDM (Monte Carlo Lagrangian Dispersion Model), which has been shown to be consistent with available laboratory and field data. The inclusion of buoyancy and the addition of a postprocessor to evaluate time-varying concentrations lead to the current model. The FIREPLUME model, as applied to fire-related UF{sub 6} cylinder releases, accounts for three phases of release and dispersion. The first phase of release involves the hydraulic rupture of the cylinder due to heating of the UF{sub 6} in the fire. The second phase involves the emission of material into the burning fire, and the third phase involves the emission of material after the fire has died during the cool-down period. The model predicts the downwind concentration of the material as a function of time at any point downwind at or above the ground. All together, five fire-related release scenarios are examined in this report. For each scenario, downwind concentrations of the UF{sub 6} reaction products, uranyl fluoride and hydrogen fluoride, are provided for two meteorological conditions: (1) D stability with a 4-m/s wind speed, and (2) F stability with a 1-m/s wind speed.
Date: June 1997
Creator: Brown, D. F.; Dunn, W. E.; Policastro, A. J. & Maloney, D.
Partner: UNT Libraries Government Documents Department