811 Matching Results

Search Results

Advanced search parameters have been applied.

Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling

Description: In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.
Date: December 3, 1998
Creator: Corporation, Detroit Diesel & Institute, Trucking Research
Partner: UNT Libraries Government Documents Department

[Interstate Clean Transportation]. Final Report for FG02-99EE50591

Description: The Interstate Clean Transportation (ICTC) purpose is to develop a public-private partnership dedicated to accelerating the market penetration of clean, alternative fuel vehicles (AFVs) in interstate goods movement. In order to foster project development, the ICTC activity sought to increase awareness of heavy-duty AFVs among truck fleet operators.
Date: July 19, 2002
Creator: Wendt, Lee
Partner: UNT Libraries Government Documents Department

National AFV teleconference. Final report

Description: This describes the planning and execution of a national meeting on alternative fuel vehicles held by teleconference in May of 1994. The report describes program initiation, promotion of the teleconference, production of the teleconference in cooperation with Pennsylvania Public Television Network, evaluation of the conference, expenditures for the project and program results.
Date: July 1, 1994
Partner: UNT Libraries Government Documents Department

Applying for and using CMAQ funds: Putting the pieces together. A Clean Cities guide

Description: This guide provides the basic concepts to aid in an alternative fuel vehicle market development program developing an application for Congestion Mitigation and Air Quality Improvement Program funding. The US Department of Energy`s Clean Cities Program is an aggressive, forward-thinking alternative fuel vehicle (AFV) market development program. The stakeholders in any Clean Cities Program subscribe to the common philosophy that, through participation in a team-oriented coalition, steady progress can be made toward achieving the critical mass necessary to propel the AFV market into the next century. An important component in the successful implementation of Clean Cities Program objectives is obtaining and directing funding to the capital-intensive AFV market development outside of the resources currently offered by the Department of Energy. Several state and local funding sources have been used over the past decade, including Petroleum Violation Escrow funds, vehicle registration fees, and state bond programs. However, federal funding is available and can be tapped to implement AFV market development programs across the nation. Historically, opportunities to use federal funding for AFV projects have been limited; however, the one remaining federal program that must be tapped into by Clean Cities Programs is the Congestion Mitigation and Air Quality (CMAQ) Improvement Program. CMAQ is a 6-year, $6 billion federal program formed by the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA).
Date: May 1, 1997
Partner: UNT Libraries Government Documents Department

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 2, January 1--March 31, 1997

Description: Energy Conversions Incorporated has continued to work on the EMD-710 dual-fuel test cell in the second quarter of the project. The project is on schedule and is sticking to their original timeline. The tasks performed and percent complete are spark prechamber work--50% done; diesel prechamber work--50% done; gas compressor--100% complete; port injection work--50% complete; hydraulic gas inlet valve work--30% complete; knock board modifications--75% complete; test documentation--50% complete; record data from navy generator and offshore rigs--50% complete and single cylinder testing--50% complete. The authors continued to do much of their parts testing on single cylinder gas operation. The single cylinder testing will likely continue throughout the 710 development.
Date: April 11, 1997
Partner: UNT Libraries Government Documents Department

The effects of oxygen-enriched intake air on FFV exhaust emissions using M85

Description: This paper presents results of emission tests of a flexible fuel vehicle (FFV) powered by an SI engine, fueled by M85 (methanol), and supplied with oxygen-enriched intake air containing 21, 23, and 25 vol% O2. Engine-out total hydrocarbons (THCs) and unburned methanol were considerably reduced in the entire FTP cycle when the O2 content of the intake air was either 23 or 25%. However, CO emissions did not vary much, and NOx emissions were higher. HCHO emissions were reduced by 53% in bag 1, 84% in bag 2, and 59% in bag 3 of the FTP cycle with 25% oxygen-enriched intake air. During cold-phase FTP,reductions of 42% in THCs, 40% in unburned methanol, 60% in nonmethane hydrocarbons, and 45% in nonmethane organic gases (NMOGs) were observed with 25% enriched air; NO{sub x} emissions increased by 78%. Converter-out emissions were also reduced with enriched air but to a lesser degree. FFVs operating on M85 that use 25% enriched air during only the initial 127 s of cold-phase FTP or that use 23 or 25% enriched air during only cold-phase FTP can meet the reactivity-adjusted NMOG, CO, NO{sub x}, and HCHO emission standards of the transitional low-emission vehicle.
Date: May 1, 1996
Creator: Poola, R.B.; Sekar, R.; Ng, H.K.; Baudino, J.H. & Colucci, C.P.
Partner: UNT Libraries Government Documents Department

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 4, July--September, 1997

Description: This quarter started out with fresh ability to perform sustained engine operation on gas because of the successful operation of the gas compressor last quarter. The authors have completed baseline tests recording emissions and efficiency numbers. This gives the authors data that they have never before been able to acquire in the facility. In addition to the baseline data they have recorded data with a host of additional engine variables. These variables include the adjustments of ignition timing, air fuel ratio, air inlet temperatures and some propane seeding of the injected gas. With the background data on record they will be able to properly measure the level of positive impact that the port gas injection system provides. The remaining time in this quarter has been focused on completing the application of the port style gas injection system. The next steps in this project all pivot on the application of this port injection system. They have also progressed in the evaluation of the cylinder/engine monitoring system.
Date: September 23, 1997
Partner: UNT Libraries Government Documents Department

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 5, November 1997--January 1998

Description: This quarter has the authors starting out with the engine mapped out in its standard dual fuel configuration. This means that the engine is configured to be exactly what the have been selling in the past. They have worked to install the new style gas injectors, Hydraulic power unit, control lines, gas lines and associated hardware. This hardware has been tested and is operational. They have been able to start at installing the spark ignition system but have been held up because of other more pressing work.
Date: February 23, 1998
Partner: UNT Libraries Government Documents Department

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 1, September 1--December 31, 1996

Description: Energy Conversions Incorporated has made substantial progress on the EMD-710 dual-fuel test cell in the first quarter of the project. The project is on schedule and has not met with any major roadblocks that would derail the planned timetable. Please note that much of the work done started before the funding arrived, and therefore those items are not included in the financial expenditures for the quarter.
Date: January 8, 1997
Partner: UNT Libraries Government Documents Department

Assessment of capital requirements for alternative fuels infrastructure under the PNGV program

Description: This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.
Date: December 31, 1998
Creator: Stork, K.; Singh, M.; Wang, M. & Vyas, A.
Partner: UNT Libraries Government Documents Department

The ethanol heavy-duty truck fleet demonstration project

Description: This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.
Date: June 1, 1997
Partner: UNT Libraries Government Documents Department

US Department of Energy workshop on future fuel technology for heavy vehicles

Description: The objective of the workshop described in this report was to develop consensus on a program strategy for use of alternative fuels in heavy vehicles. Participants represented fuel providers, additive suppliers, the trucking industry, engine manufacturers, and government or national laboratory staff. Breakout sessions were co-facilitated by national laboratory staff and industry representatives.
Date: December 31, 1996
Partner: UNT Libraries Government Documents Department

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 3, April 1--June 30, 1997

Description: This quarter the project focused primarily in two basic areas. Approximately 60% of the time was applied at continuing to manufacture and test alternate designs of the diesel prechamber and its associated auxiliary equipment. Approximately 23% time was applied to the hydraulic actuation of the gas injector and the design work of applying the gas injector to the engines cylinder liner. The remaining 17% time was spread over a number of areas two of which include the completion of knock detection system and test facility calibration and service.
Date: June 30, 1997
Partner: UNT Libraries Government Documents Department

The importance of safety in achieving the widespread use of hydrogen as a fuel

Description: The advantages of hydrogen fuel have been adequately demonstrated on numerous occasions. However, two major disadvantages have prevented any significant amount of corresponding development. These disadvantages have been in the economics of producing sufficient quantities of hydrogen and in the safety (both real and perceived) of its use. To date work has mostly been properly centered on solving the economic problems. However, a greater effort on the safety of new hydrogen systems now being proposed also deserves consideration. To achieve the greatest safety in the expansion of the use of hydrogen into its wide-spread use as a fuel, attention must be given to four considerations. These are, obtaining knowledge of all the physical principles involved in the new uses, having in place the regulations that allow the safe interfacing of the new systems, designing and constructing the new systems with safety in mind, and the training of the large number of people that will become the handlers of the hydrogen. Existing organizations that produce, transport, or use hydrogen on a large scale have an excellent safety record. This safety record comes as a consequence of dedicated attention to the above-mentioned principles. However, where these principles were not closely followed, accidents have resulted. Some examples can be cited. As the use of hydrogen becomes more widespread, there must be a mechanism for assuring the universal application of these principles. Larger and more numerous fleet operations with hydrogen fuel may be the best way to begin the indoctrination of the general public to the more general use of hydrogen fuel. Demonstrated safe operation with hydrogen is vital to its final acceptance as the fuel of choice.
Date: September 1, 1997
Creator: Edeskuty, F.J.
Partner: UNT Libraries Government Documents Department

Development and testing of a high efficiency advanced coal combustor phase III industrial boiler retrofit. Technical progress report No. 17, 18 and 19, September 30, 1991--December 31, 1996

Description: The objective of this project is to retrofit a burner, capable of firing microfine coal, to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the last three quarters [seventeenth (October `95 through December `95), eighteenth (January `96 through March `96), and nineteenth (April `96 through June `96)] of the program.
Date: July 29, 1996
Creator: Borio, R.W.; Patel, R.L. & Thornock, D.E.
Partner: UNT Libraries Government Documents Department

Alternative Fuel News: May 2000 Special Edition

Description: In this special issue of Alternative Fuel News, the authors summarize DOE's current position on the local government and private fleet rulemaking that has been under consideration. The authors also look at the new area of focus, niche markets. Your participation and input are invited as the authors craft new directions for the nation's transportation future.
Date: May 3, 2000
Creator: Brennan, A. & Ficker, C.
Partner: UNT Libraries Government Documents Department

Hawaii alternative fuels utilization program. Phase 3, final report

Description: The Hawaii Alternative Fuels Utilization Program originated as a five-year grant awarded by the US Department of Energy (USDOE) to the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The overall program included research and demonstration efforts aimed at encouraging and sustaining the use of alternative (i.e., substitutes for gasoline and diesel) ground transportation fuels in Hawaii. Originally, research aimed at overcoming technical impediments to the widespread adoption of alternative fuels was an important facet of this program. Demonstration activities centered on the use of methanol-based fuels in alternative fuel vehicles (AFVs). In the present phase, operations were expanded to include flexible fuel vehicles (FFVs) which can operate on M85 or regular unleaded gasoline or any combination of these two fuels. Additional demonstration work was accomplished in attempting to involve other elements of Hawaii in the promotion and use of alcohol fuels for ground transportation in Hawaii.
Date: August 1, 1996
Creator: Kinoshita, C.M. & Staackmann, M.
Partner: UNT Libraries Government Documents Department

Alternate fuels and chemicals from synthesis gas: Vinyl acetate monomer. Final report

Description: There has been a long-standing desire on the part of industry and the U.S. Department of Energy to replace the existing ethylene-based vinyl acetate monomer (VAM) process with an entirely synthesis gas-based process. Although there are a large number of process options for the conversion of synthesis gas to VAM, Eastman Chemical Company undertook an analytical approach, based on known chemical and economic principles, to reduce the potential candidate processes to a select group of eight processes. The critical technologies that would be required for these routes were: (1) the esterification of acetaldehyde (AcH) with ketene to generate VAM, (2) the hydrogenation of ketene to acetaldehyde, (3) the hydrogenation of acetic acid to acetaldehyde, and (4) the reductive carbonylation of methanol to acetaldehyde. This report describes the selection process for the candidate processes, the successful development of the key technologies, and the economic assessments for the preferred routes. In addition, improvements in the conversion of acetic anhydride and acetaldehyde to VAM are discussed. The conclusion from this study is that, with the technology developed in this study, VAM may be produced from synthesis gas, but the cost of production is about 15% higher than the conventional oxidative acetoxylation of ethylene, primarily due to higher capital associated with the synthesis gas-based processes.
Date: January 1, 1999
Creator: Colberg, Richard D.; Collins, Nick A.; Holcombe, Edwin F.; Tustin, Gerald C. & Zoeller, Joseph R.
Partner: UNT Libraries Government Documents Department