377 Matching Results

Search Results

Advanced search parameters have been applied.

Analysis of fluorine addition to the vanguard first stage

Description: From Introduction: "This report presents data pertinent to the problem of boosting rocket performance by adding up to 30 percent liquid fluorine to the liquid oxygen of an existing oxygen-hydrocarbon rocket engine."
Date: January 24, 1957
Creator: Tomazic, William A; Schmidt, Harold W & Tischler, Adelbert O
Partner: UNT Libraries Government Documents Department

Fluorine Micas

Description: From Abstract: "In the report, detailed data and descriptions are given on compositions, syntheses, products, and uses, and on the properties including physical, dielectric, chemical, X-ray, optical, and structural."
Date: unknown
Creator: Shell, Haskiel R. & Ivey, Kenneth H.
Partner: UNT Libraries Government Documents Department

Fluorine Adsorption and Diffusion in Polycrystalline Silica

Description: The measurement of fluorine penetration into archeological flint artifacts using Nuclear Reaction Analysis (NRA) has been reported to be a potential dating method. However, the mechanism of how fluorine is incorporated into the flint surface, and finally transported into the bulk is not well understood. This research focuses on the study of the fluorine uptake phenomenon of flint mineral in aqueous fluoride solutions. Both theoretical and experimental approaches have been carried out. In a theoretical approach, a pipe-diffusion model was used to simulate the complicated fluorine transportation problem in flint, in which several diffusion mechanisms may be involved.
Date: December 1998
Creator: Jin, Jian-Yue
Partner: UNT Libraries

Characterization of Cure Kinetics and Physical Properties of a High Performance, Glass Fiber-Reinforced Epoxy Prepreg and a Novel Fluorine-Modified, Amine-Cured Commercial Epoxy.

Description: Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network was tested for wear resistance using tribological techniques. Of the six anilines, 3-fluoroaniline and 4-fluoroaniline were determined to have lower wear than the ...
Date: December 2003
Creator: Bilyeu, Bryan
Partner: UNT Libraries

Synthesis of 6-acrylamido-4-(2-[18F]fluoroanilino)quinazoline: Aprospective irreversible EGFR binding probe

Description: Acrylamido-quinazolines substituted at the 6-position bindirreversibly to the intracellular ATP binding domain of the epidermalgrowth factor receptor (EGFR). A general route was developed forpreparing 6-substituted-4-anilinoquinazolines from [18F]fluoroanilinesfor evaluation as EGFR targeting agents with PET. By a cyclizationreaction, 2-[18F]fluoroaniline was reacted withN'-(2-cyano-4-nitrophenyl)-N,N-dimethylimidoformamide to produce6-nitro-4-(2-[18F]fluoroanilino)quinazoline in 27.5 percentdecay-corrected radiochemical yield. Acid mediated tin chloride reductionof the nitro group was achieved in 5 min (80 percent conversion) andsubsequent acylation with acrylic acid gave6-acrylamido-4-(2-[18F]fluoroanilino)quinazoline in 8.5 percentdecay-corrected radiochemical yield, from starting fluoride, in less than2 hours.
Date: March 30, 2004
Creator: Vasdev, Neil; Dorff, Peter N.; Gibbs, Andrew R.; Nandanan,Erathodiyil; Reid, Leanne M.; O'Neil, James P. et al.
Partner: UNT Libraries Government Documents Department

Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

Description: Reactions involving radioactive nuclei play an important role in explosive stellar events such as novae, supernovae, and X-ray bursts. The development of accelerated, proton-rich radioactive ion beams provides a tool for directly studying many of the reactions that fuel explosive hydrogen burning. The experimental nuclear astrophysics program at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory is centered on absolute cross section measurements of these reactions with radioactive ion beams. Beams of {sup 17}F and {sup 18}F, important nuclei in the hot-CNO cycle, are currently under development at HRIBF. Progress in the production of intense radioactive fluorine beams is reported. The Daresbury Recoil Separator (DRS) has been installed at HRIBF as the primary experimental station for nuclear astrophysics experiments. The DRS will be used to measure reactions in inverse kinematics with the techniques of direct recoil detection, delayed-activity recoil detection, and recoil-gamma coincidence measurements. The first astrophysics experiments to be performed at HRIBF, mA the application of the recoil separator in these measurements, are discussed.
Date: October 1, 1996
Creator: Blackmon, J.C.
Partner: UNT Libraries Government Documents Department

Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

Description: The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F{sub 2}) and uranium hexafluoride (UF{sub 6}) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F{sub 2} and UF{sub 6} to the charcoal bed were the possibility of explosive reactions between the charcoal and F{sub 2}, the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F{sub 2}-UF{sub 6} gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined.
Date: September 1, 1998
Creator: Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D. & Williams
Partner: UNT Libraries Government Documents Department

Fluorine for Hydrogen Exchange in the Hydrofluorobenzene Derivatives C6HxF(6-x), where x = 2, 3, 4 and 5 by Monomeric [1,2,4-(Me3C)3C5H2]2CeH; The Solid State Isomerization of [1,2,4-(Me3C)3C5H2]2Ce(2,3,4,5-C6HF4) to [1,2,4-(Me3C)3C5H2]2Ce(2,3,4,6-C6HF4)

Description: The reaction between monomeric bis(1,2,4-tri-t-butylcyclopentadienyl)cerium hydride, Cp'2CeH, and several hydrofluorobenzene derivatives is described. The aryl derivatives that are the primary products, Cp'2Ce(C6H5-xFx) where x = 1,2,3,4, are thermally stable enough to be isolated in only two cases, since all of them decompose at different rates to Cp'2CeF and a fluorobenzyne; the latter is trapped by either solvent when C6D6 is used or by a Cp'H ring when C6D12 is the solvent. The trapped products are identified by GCMS analysis after hydrolysis. The aryl derivatives are generated cleanly by reaction of the metallacycle, Cp'((Me3C)2C5H2C(Me2)CH2)Ce, with a hydrofluorobenzene and the resulting arylcerium products, in each case, are identified by their 1H and 19F NMR spectra at 20oC. The stereochemical principle that evolves from these studies is that the thermodynamic isomer is the one in which the CeC bond is flanked by two ortho-CF bonds. This orientation is suggested to arise from the negative charge that is localized on the ipso-carbon atom due to Co(delta+)-Fo(delta-) polarization. The preferred regioisomer is determined by thermodynamic rather than kinetic effects; this is illustrated by the quantitative, irreversible solid-state conversion at 25oC over two months of Cp'2Ce(2,3,4,5-C6HF4) to Cp'2Ce(2,3,4,6-C6HF4), an isomerization that involves a CeC(ipso) for C(ortho)F site exchange.
Date: April 21, 2008
Creator: Andersen, Richard; Werkema, Evan L. & Andersen, Richard A.
Partner: UNT Libraries Government Documents Department

PREPARATION OF ANHYDROUS F-18 FLUORIDE, T. Tewson. Journal of Labelled Compounds and Radiopharmaceuticals S165; 52, Supplement 1 2009

Description: The original specific aims of the grant where cut back considerably as the study section reduced both the time and the budget for the project. The objective of the grant was to show that fluorine-18 fluoride could be prepared completely anhydrous and thus substantially more reactive than conventionally dried fluoride using the method of Sun and DiMagno. This method involved using conventionally dried fluoride to prepare an aromatic fluoride in which the aromatic ring is substituted with electron withdrawing groups. The aryl fluoride is then dried and purified and the fluoride is displaced with an anhydrous nucleophile. Using fluorine-19 and macroscopic scale reactions the reactions work well and give anhydrous fluoride salts that are both more reactive and more selective in their reactions than conventionally dried fluoride. The original substrate chosen for the reaction was bromopentacyanobenzene (1). This compound proved to be easy to make but very hard to purify. As an alternative hexabromobenzene, which is commercially available in high purity, was tried. This reacted cleanly with conventionally dried F-18 fluoride in acetonitrile to give [{sup 18}F]-fluoropentabromobenzene (2), which could be dried by passage of the solution over alumina, which also removed any unreacted fluoride. The fluorine-18 fluoride could be liberated from (2) by displacement with an anhydrous nucleophilic tetra-alkylammonium salt but the anion had to be chosen with considerable care. The reaction is potentially reversible especially as, on the no carrier added scale, there is inevitably an excess of hexabromobenzene and so the displacing nucleophile is chosen to deactivate the aromatic compound to further nucleophilic displacement reactions. To this end tetrabutylammonium azide and tetrabutylammonium phenolate have been tried. Both work but the phenolate is probably the better choice. The F-18 fluoride produced by this process is substantially more reactive than conventionally dried fluoride. A solution of the 3'-anhydrothymidine-5-benzoate (3) ...
Date: July 1, 2009
Creator: Tewson, T.
Partner: UNT Libraries Government Documents Department

Prototype negative ion sources for RIB generation

Description: Radioactive ion beams (RIBs) of {sup 17}F and {sup 18}F are of interest for investigation of astrophysical phenomena such as the hot CNO cycle and the rp stellar nuclear synthesis processes. In order to generate useful beam intensities of atomic F{sup {minus}}, the species must be efficiently and expediently released from the target material, thermally dissociated from fluoride release products during transport to the ionization chamber of the ion source, and efficiently ionized in the source upon arrival. The authors have conceived and evaluated two prototype negative ion sources for potential use for RIB generation: (1) a direct extraction source and (2) a kinetic ejection source. Both sources utilize Cs vapor to enhance F{sup {minus}} formation. The mechanical design features, operational parameters, ionization efficiencies for forming atomic F{sup {minus}} and delay times for transport of F and fluoride compounds for the respective sources are presented. The efficiency {eta} for formation and extraction of F{sup {minus}} for the direct extraction negative ion source is found to be {eta} {approximately} 1.0% while the characteristic delay time {tau} for transport of F and fluorides through the source is typically, {eta} {approximately} 120s; the analogous efficiencies and delay times for the kinetic ejection negative ion source are, respectively: {eta} = {approximately}3.2% and {tau} = {approximately}70s.
Date: December 1, 1997
Creator: Alton, G.D.; Murray, S.N.; Welton, R.F.; Williams, C. & Cui, B.
Partner: UNT Libraries Government Documents Department

ANTI Preference of the Pyramidalized Radical Center to the Two Fluorines in Difluoro Cyclic Compounds.

Description: An extensive study of disubstituted cycloalkanes like CnH2n where n=3,4,5 and 6 using DFT((U)B3LYP/6-31G(d) and 6-311+G(2df,2p)) calculations is presented focusing on the effect of pyramidalization of the radical center. A potential energy surface (PES) analysis shows that the radical prefers to pyramidalize anti to the two cis fluorines in the disubstituted cycloalkanes. The degree of pyramidalization for 1,2-difluorocyclopropyl radical is 43.9o away from the cis fluorines whereas for 1,3-difluorocyclobutyl radical, 1,3-difluorocyclopentyl radical and 1,3-difluorocyclohexyl radical is 3.8o, 5.4o and 14.5o respectively away from the cis fluorines. The importance of this pyramidality effect in these compounds is discussed in context with the carbon-hydrogen bond dissociation energies (BDE's) because the preference of the radical centers to pyramidalize anti to the fluorines affects the bond dissociation energy. Importance of steric effect and unfavorable electronic interactions have been extensively explored in planar permethylated cyclobutadiene (Me4CBD) and cyclooctatetraene (Me8COT) using ((U)B3LYP/6-31G(d) and 6-311+G(2df,2p)) calculations. It is thought that steric interactions dominate electronic interactions in Me8COT, while this works opposite in case of Me4CBT. Instead, in Me4CBD the number of unfavorable electronic interactions between π bonds and out-of-plane hydrogens plays the dominant role in determining the relative energies. Interactions between the π bonds of CBD and the out-of-plane hydrogens on carbons attached to the four-membered ring becomes very interesting when the ring size changes. With ethano bridge on the cyclobutadiene ring interaction with the diagonal bonds results in non-bonding AOs across the other diagonal having the opposite phase in the highest occupied (HO)MO. If the HOMO and LUMO are switched, bis-ethano-bridged tetrahedrane is formed. It is suggested that bis-ethano-bridged tetrahedrane is thermodynamically more stable than bis-ethano-bridged cyclobutadienes. While the reverse is true for unsubstituted cyclobutadienes. The ability of ethano bridges to reverse the usual order is because it causes the doubly-bonded carbons to pyramidalize.
Date: May 2008
Creator: Tanna, Jigisha
Partner: UNT Libraries

A new precursor for the preparation of 6-[18F]-fluoro-L-m-tyrosine (FMT): Efficient synthesis and comparison of radiolabeling

Description: For the electrophilic preparation of 6-[18F]-Fluoro-L-m-tyrosine (FMT), a PET tracer for measuring changes in dopaminergic function in movement disorders, a novel precursor, N-(tert-butoxycarbonyl)-3-(tert-butoxycarbonyloxy)-6-trimethylstannnyl-L-phenylalanine ethyl ester, was synthesized in four steps and 26 percent yield starting from L-m-tyrosine. FMT produced by two methods at two institutions was comparable in decay corrected yield, 25-26 percent, and quality (chemical, enantiomeric, and radiochemical purity and specific activity) as that obtained with the original N-trifluoroacetyl-3-acetyl-6-trimethylstannyl-L-m-tyrosine ethyl ester FMT precursor.
Date: January 9, 2004
Creator: VanBrocklin, Henry F.; Blagoev, Milan; Hoepping, Alexander; O'Neil, James P.; Klose, Manuela; Schubiger, Pius A. et al.
Partner: UNT Libraries Government Documents Department

Evaluation of Fluorine-Trapping Agents for Use During Storage of the MSRE Fuel Salt

Description: A fundamental characteristic of the room temperature Molten Salt Reactor Experiment (MSRE) fuel is that the radiation from the retained fission products and actinides interacts with this fluoride salt to produce fluorine gas. The purpose of this investigation was to identify fluorine-trapping materials for the MSRE fuel salt that can meet both the requirement of interim storage in a sealed (gastight) container and the vented condition required for disposal at the Waste Isolation Pilot Plant (WIPP). Sealed containers will be needed for interim storage because of the large radon source that remains even in fuel salt stripped of its uranium content. An experimental program was undertaken to identify the most promising candidates for efficient trapping of the radiolytic fluorine generated by the MSRE fuel salt. Because of the desire to avoid pressurizing the closed storage containers, an agent that traps fluorine without the generation of gaseous products was sought.
Date: May 1, 1999
Creator: Brynestad, J. & Williams, D.F.
Partner: UNT Libraries Government Documents Department