80 Matching Results

Search Results

Advanced search parameters have been applied.

Market failures, consumer preferences, and transaction costs inenergy efficiency purchase decisions

Description: Several factors limit the energy savings potential and increase the costs of energy-efficient technologies to consumers. These factors may usefully be placed into two categories; one category is what economists would define as market failures and the other is related to consumer preferences. This paper provides a conceptual framework for understanding the roles of these factors, and develops a methodology to quantify their effects on costs and potentials of two energy efficient end uses - residential lighting and clothes washers. It notes the significant roles played by the high implicit cost of obtaining information about the benefits of the two technologies and the apparent inability to process and utilize information. For compact fluorescent lamps, this report finds a conservative estimate of the cost of conserved energy of 3.1 cents per kWh. For clothes washers, including water savings reduces the cost of conserved energy from 13.6 cents to 4.3 cents per equivalent kWh. Despite these benefits, market share remains low. About 18 million tons of CO2 could be saved cost effectively from 2005 sales of these two technologies alone. The paper also notes that trading of carbon emissions will incur transaction costs that will range from less than 10 cents per metric ton of CO2 for larger size projects and programs to a few dollars per metric ton of carbon for the smaller ones.
Date: November 23, 2004
Creator: Sathaye, Jayant & Murtishaw, Scott
Partner: UNT Libraries Government Documents Department

A light diet for a giant appetite: An assessment of China's proposed fluorescent lamp standard

Description: Lighting has been one of the fastest growing electric end-uses in China over the last twenty years, with an average annual growth rate of 14%. Fluorescent lighting provides a significant portion of China's lighting need. In 1998, China produced 680 million fluorescent lamps, of which 420 million were linear fluorescent lamps of various diameters (T8 to T12). There are substantial variations both in energy efficiency and lighting performance among locally produced fluorescent lamps. Such variations present a perfect opportunity for policy intervention through efficiency standards to promote the adoption of more efficient fluorescent lamps in China. This paper analyzes China's proposed minimum efficiency standard for fluorescent lamps and presents an assessment of its likely impacts on China's lighting energy consumption and GHG emissions.
Date: April 11, 2002
Creator: Lin, Jiang
Partner: UNT Libraries Government Documents Department

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

Description: The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Three of PEARL program during the period of October 2002 to April 2003, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The products tested are 20 models of screw-based compact fluorescent lamps (CFL) of various types and various wattages made or marketed by 12 different manufacturers, and ten models of residential lighting fixtures from eight different manufacturers.
Date: March 1, 2006
Creator: O'Rourke, Conan & Zhou, Yutao
Partner: UNT Libraries Government Documents Department

Demonstration of Recessed Downlight Technologies: Power and Illumination Assessment

Description: Solid state lighting (SSL), specifically light-emitting diodes (LED), has been advancing at a rapid pace, and there are presently multiple products available that serve as direct replacements for traditional luminaires. In this demonstration, conventional recessed lights in a conference room were used to compare conventional incandescent A-lamps, incandescent reflector R-lamps, dimming compact fluorescent lamps (CFL), to an LED replacement product. The primary focus during the study was on light delivered to the task plane as provided by the power required by the lighting system. Vertical illuminance, dimming range, and color shift are also important indicators of lighting quality and are discussed in the report. The results clearly showed that LEDs, with dimming-capable drivers, are much more efficient than incandescent and CFLs. Further, LEDs provide much smoother and consistent dimming than dimmable CFLs. On the potential negative side, it is important that the dimming switch be identified as compatible with the LED driver. A wide variety of dimmer switches are capable of dimming LEDs down to 15% of full light output, while select others can be capable of dimming LEDs down to 5%. In addition, LEDs can be intensive light sources, which can result in uncomfortable glare in some applications and to some occupants. Higher ceiling (9-foot or greater) or non-specular reflectors can act to alleviate the potential for glare.
Date: November 20, 2009
Creator: Parker, Steven A. & Beeson, Tracy A.
Partner: UNT Libraries Government Documents Department

Integral CFLs performance in table lamps

Description: This paper focuses on performance variations associated with lamp geometry and distribution in portable table luminaires. If correctly retrofit with compact fluorescent lamps (CFLs), these high use fixtures produce significant energy savings, but if misused, these products could instead generate consumer dissatisfaction with CFLs. It is the authors assertion that the lumen distribution of the light source within the luminaires plays a critical role in total light output, fixture efficiency and efficacy, and, perhaps most importantly, perceived brightness. The authors studied nearly 30 different integral (screw-based) CFLs available on the market today in search of a lamp, or group of lamps, which work best in portable table luminaires. The findings conclusively indicate that horizontally oriented CFLs outperform all other types of CFLs in nearly every aspect.
Date: March 1, 1997
Creator: Page, E.; Driscoll, D. & Siminovitch, M.
Partner: UNT Libraries Government Documents Department

NIST energy related inventions - electronic starter device for fluorescent lamps. Final report

Description: Due to silicon supplier failures to produce the 03/04 triac silicon as specified in the original proposal, the direction of the starter program was migrated to use available off the shelf power semiconductors. This had unexpected positive side effects including a reduction in component price, improved quality, and the refocus of engineering efforts to concentrate on the Super ASIC core technology. The starter program has begun shipments employing this new architecture, and is being well received both in the US and abroad. In its present form, the starter meets the original cost projections within 20%. Work is continuing on the 0.8 micron ASIC, which will allow for the starter to sell below $1.00 in volume. Even at the slightly higher price, interest is strong in replacing the low performance glow starter for small fluorescent applications with a high performance alternative.
Date: June 1, 1998
Partner: UNT Libraries Government Documents Department

Electronic starter device for fluorescent lamps. Final report

Description: Due to silicon supplier failures to produce the 03/04 triac silicon as specified in the original proposal, the direction of the starter program was migrated to use available off the shelf power semiconductors. This had unexpected positive side effects including a reduction in component price, improved quality, and the refocus of engineering efforts to concentrate on the Super ASIC core technology. The starter program has begun shipments employing this new architecture, and is being well received both in the US and abroad. In its present form, the starter meets original cost projections within 20%. Work is continuing on the 0.8 micron ASIC, which will allow for the starter to sell below $1.00 in volume. Even at the slightly higher price, interest is strong in replacing the low performance glow starter for small fluorescent applications with a high performance alternative.
Date: June 1, 1998
Partner: UNT Libraries Government Documents Department

Energy efficient alternatives to halogen torchieres

Description: A series of novel energy efficient torchiere systems have been developed using compact fluorescent lamps (CFLs). These systems were studied photometrically and compared with the performance of traditional commercially available tungsten halogen sources. Gonio-photometric data and power assessments indicate that significant lighting energy savings can be obtained by utilizing CFL sources instead of standard tungsten halogen sources. This energy savings is jointly due to the higher source efficacy of the CFLs and the surprisingly poor performance of the imported 300 Watt halogen lamps. Experimental data shows that a 50 to 60 Watt CFL will effectively lumen match a variety of 300 Watt tungsten halogen sources with 5 to 10 times the efficacy. CFL torchieres have additional benefits of higher power quality and cooler lamp operating temperature, making them safer fixtures.
Date: March 1, 1997
Creator: Siminovitch, M.; Marr, L.; Mitchell, J. & Page, E.
Partner: UNT Libraries Government Documents Department

IC-BASED CONTROLS FOR ENERGY-EFFICIENT LIGHTING

Description: A new approach for driving high frequency energy saving ballasts is developed and documented in this report. The developed approach utilizes an IC-based platform that provides the benefits of reduced system cost, reduced ballast size, and universal application to a wide range of lamp technologies, such as linear fluorescent lamps (LFL), compact fluorescent lamps (CFL) and high intensity discharge lamps (HID). The control IC chip set developed for the platform includes dual low voltage (LV) IC gate drive that provides gate drive for high and low side power switches in typical ballast circuits, and ballast controller IC that provides control functionalities optimal for different lamps and digital interface for future extension to more sophisticated control and communication.
Date: March 1, 2005
Creator: Zhang, Richard
Partner: UNT Libraries Government Documents Department

New energy efficient torchieres ready for hot torchiere market

Description: The extraordinary market growth of the high power halogen torchiere (halogen uplighter) presents significant global energy savings opportunities for energy efficient alternatives. Extensive developed of prototype designs of energy efficient torchiere systems using compact fluorescent lamps (CFLs) has lead directly to the production and commercialization of CFL torchieres. This paper analyzes the current global market for torchieres and compares the electrical and photometric characteristics of one of the new CFL torchieres to standard tungsten halogen torchieres. Power assessments and photometric data indicate that the new CFL torchiere provides significant energy savings over the standard tungsten halogen torchiere while producing more luminous flux. The energy savings is jointly due to the high source efficacy of the CFLs and the poor performance of many cheaply made halogen lamps. Laboratory and in-situ experiments indicate that the CFL torchieres use 65 Watts to produce 25% more light than the 300 W tungsten halogen torchieres they are designed to replace. Additionally, the CFL torchieres have the benefit of a cooler lamp operating temperature, making them safer luminaires (Brooks, 1997; New York Times, 1997). This safety benefit, coupled with the potential for significant reductions in global greenhouse gas emissions, has prompted the insurance industry to form a unique alliance with energy conservation groups to promote energy efficient torchieres.
Date: November 1, 1997
Creator: Page, E.; Mills, E. & Siminovitch, M.
Partner: UNT Libraries Government Documents Department

Novel Nanophosphors for High Efficiency Fluorescent Lamps

Description: This is the Yearly Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. Our chief achievement, during the current contract period, pertains to the successful synthesis and characterization of coated phosphors. We demonstrated several synthesis techniques for the coating of micron sized commercial phosphors with quantum-splitting and UV emitting nanophosphors. We have also continued our fundamental investigations into the physical processes that determine the quantum efficiency of the nanophosphors and this has further helped codify a set of rules for the host lattice that support efficient quantum splitting and UV emission at room temperature. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.
Date: September 30, 2005
Creator: Srivastava, Alok M.
Partner: UNT Libraries Government Documents Department

Economic Analysis of Ilumex, A Project to Promote Energy-Efficient Residential Lighting in Mexico

Description: A higher penetration of compact fluorescent lamps (CFLs) for household lighting can reduce growth in peak electricity demand, reduce sales of subsidized electricity, and lessen environmental impacts. This paper describes an economic analysis of a project designed to promote high penetration rates of CFLs in two cities in Mexico. Our analysis indicates that the project will bring substantial net economic benefits to Mexico, the utility, and the average customer. In the absence of any subsidy to CFLs, most customers will see a payback period longer than two years. By sharing some of the anticipated net benefit, CFE, the utility company, can reduce the payback period to a maximum of two years for all customers. CFE's role is thus crucial to the successful implementation of the project. Expanding the Ilumex project to a Mexico-wide program would make a significant contribution towards meeting the planned addition of generation capacity by the year 2000.
Date: November 1, 1993
Creator: Sathaye, Jayant A.; Friedmann, R.; Meyers, S.; de Buen, O.; Gadgil, A.J.; Vargas, E. et al.
Partner: UNT Libraries Government Documents Department

Federal Energy Management Program technical assistance case study: The Forrestal Building relighting project saves $400K annually

Description: The US Department of Energy (DOE) believes energy efficiency begins at home -- in this case the James A. Forrestal Building in Washington, D.C. Since 1969, the 1.7 million-square-foot Forrestal Building has served as DOE Headquarters. In 1989, a team of in-house energy specialists began searching for opportunities to make the Forrestal Building more energy efficient. The team, on which personnel from the Federal Energy Management Program (FEMP) served, identified lighting as an area in which energy use could be reduced substantially. A monitoring program showed that the building`s more than 34,000 1-foot by 4-foot fluorescent lighting fixtures were responsible for 33% of the building`s total annual electric energy use, which represents more than 9 million kilowatt-hours (kWh) per year. In initiating the relighting program, DOE hoped to achieve these broad goals: Reduce energy use and utility bills, and improve lighting quality by distributing the light more uniformly. Funding was also an important consideration. DOE sought financing alternatives through which the lighting retrofit is paid for without using government-appropriated capital funds. DOE cut lighting costs more than 50% and paid for the project with the money saved on energy bills.
Date: January 1, 1997
Partner: UNT Libraries Government Documents Department

Magnetic fluorescent ballasts: Market data, market imperfections, and policy success

Description: Many economists have strongly questioned engineering-economic studies aimed at demonstrating anomalously slow diffusion of energy-efficient technology and the benefits of regulations to promote such technology. One argument against such studies is that standard techniques of engineering-economics are either inappropriate for or are routinely misapplied in assessing the performance of the market for energy efficiency. This paper presents engineering-economic evidence on the diffusion of energy efficiency improvements that takes account of such critiques. The authors examine the engineering and economic characteristics of standard and energy-efficient magnetic ballasts for fluorescent lighting. Efficient magnetic ballasts represented an excellent investment for 99% of the commercial building floor stock, and a moderately good investment for 0.7% of the commercial floor stock. Still, these ballasts were only being adopted in the 1980s at a rate commensurate with the enactment of appliance efficiency standards in various states. In this case, there is solid empirical evidence for skepticism about the effectiveness of the market mechanism in promoting cost-effective energy efficiency improvements as well as evidence of the benefits of regulation to counteract this shortcoming.
Date: December 1, 1995
Creator: Koomey, J.G.; Sanstad, A.H. & Shown, L.J.
Partner: UNT Libraries Government Documents Department

A decision analytical framework for evaluating technical innovation and diffusion: The case of electronic ballasts for commercial buildings

Description: The authors present a decision analytical framework for studying the decision to purchase new energy-efficient magnetic ballasts for commercial buildings as a special case study for understanding the decision environment that could either encourage or retard the penetration of new carbon-saving technologies. The framework is particularly germane to situations where uncertainty in the investment outcome prevails as a dominant dimension of the problem. It allows the policy analyst to consider policies that operate through other considerations than through the price alone. A key effect is how a policy will either truncate a probability distribution to remove the worst outcomes or cause the probability distribution to narrow. Such considerations appear important when studying information programs, vendor warranty, and other factors that condition the investment decision.
Date: March 1, 1996
Creator: Huntington, H.G.; Weyant, J.P.; Johnson, B. & Kann, A.
Partner: UNT Libraries Government Documents Department

Energy efficient torchieres: From the Laboratory to the marketplace

Description: This paper describes the history, technology development, technology transfer and application of the energy efficient compact fluorescent torchiere. A review of the essential efforts that went into the development of the first commercially available CFL torchiere technologies is described. Also included is a review of the performance issues related to lumen matching capabilities. Furthermore, the paper overviews the critical steps and successes that occurred as this technology made the transition from laboratory to marketplace. The energy efficient torchiere promises to have one of the single largest energy saving potentials of any DSM program developed to date. This project represents unique spectrum of industry-laboratory collaborations and addresses an important national energy and safety problem.
Date: April 1, 1998
Creator: Siminovitch, Michael; Page, Erik & Driscoll, Debbie
Partner: UNT Libraries Government Documents Department

Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

Description: The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.
Date: November 1, 1993
Partner: UNT Libraries Government Documents Department

A spreadsheet for analyzing the in situ performance of fluorescent luminaires

Description: A spreadsheet program for determining system efficacy, power input and light output of common 4 ft fluorescent lighting systems under realistic operating conditions is described. The program uses accepted IES engineering principles to precisely account for ballast factor, existing thermal conditions and maintenance practices. The spreadsheet, which includes a data base of lamp and ballast performance data, can be used to calculate the cost-effectiveness of many common lighting retrofits.
Date: August 1, 1991
Creator: Rubinstein, F. & Zhang, Chin
Partner: UNT Libraries Government Documents Department

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

Description: The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This final report summarizes the experimental procedure and results of all cycles (Cycles 1 through 8) of PEARL program from the beginning of year 2000 to the end of 2007, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. In each cycle of PEARL program, PEARL Board selects a list of Compact Fluorescent Lamp (CFL) and Residential Lighting Fixture (RLF) models that are Energy Star qualified. In Cycle 5, Cycle 7, and Cycle 8, no fixture models were selected. After that PEARL sponsors procure product samples for each selected model from different stores and locations in the retail market and send them to LRC for testing. LRC then receive and select the samples, and test them against Energy Star specifications. After the testing LRC analyze and report the results to PEARL Board. Totally 185 models of CFL and 52 models of RLF were tested in PEARL program. Along with the evolution of the Energy Star specifications from year 2000 to 2003, parameters that were required by Energy Star changed during the eight years of PEARL program. The testing parameters and number of samples tested in PEARL program also changed during ...
Date: December 31, 2007
Creator: O'Rourke, Conan & Zhou, Yutao
Partner: UNT Libraries Government Documents Department

Compact Fluorescent Plug-In Ballast-in-a-Socket

Description: The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value ...
Date: December 21, 2001
Creator: Voelker, Rebecca
Partner: UNT Libraries Government Documents Department

Novel Nanophosphors for High Efficiency Fluorescent Lamps

Description: This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation, which are detailed in ...
Date: March 31, 2007
Creator: Srivatava, Alok
Partner: UNT Libraries Government Documents Department

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances

Description: This study estimated energy, environmental and consumer economic impacts of U.S. Federal residential energy efficiency standards that became effective in the 1988-2006 period, and of energy efficiency standards for fluorescent lamp ballasts and distribution transformers. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products in order to estimate realized impacts and to update projected impacts. It also performed new analysis for the first (1990) fluorescent ballast standards, which had been introduced in the NAECA legislation without a rulemaking. We estimate that the considered standards will reduce residential/ commercial primary energy consumption and carbon dioxide emissions in 2030 by 4percent compared to the levels expected without any standards. The reduction for the residential sector is larger, at 8percent. The estimated cumulative energy savings from the standards amount to 39 quads by 2020, and 63 quads by 2030. The standards will also reduce emissions of carbon dioxide by considerable amounts.The estimated cumulative net present value of consumer benefit amounts to $241 billion by 2030, and grows to $269 billion by 2045. The overall ratio of consumer benefits to costs (in present value terms) in the 1987-2050 period is 2.7 to 1. Although the estimates made in this study are subject to a fair degree of uncertainty, we believe they provide a reasonable approximation of the national benefits resulting from Federal appliance efficiency standards.
Date: May 8, 2008
Creator: Meyers, Stephen P.; McMahon, James & Atkinson, Barbara
Partner: UNT Libraries Government Documents Department

Annual Site Environmental Report Calendar Year 2007

Description: This report summarizes the environmental status of Ames Laboratory for calendar year 2007. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies 11 buildings owned by the Department of Energy (DOE). See the Laboratory's Web page at www.external.ameslab.gov for locations and Laboratory overview. The Laboratory also leases space in ISU owned buildings. In 2007, the Laboratory accumulated and disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Small Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2007. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2007. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2003. Included in these efforts were battery and CRT recycling, waste white paper and green computer paper-recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, styrofoam peanuts, batteries, fluorescent lamps and telephone books. Ames ...
Date: December 31, 2007
Creator: Laboratory, Dan Kayser-Ames
Partner: UNT Libraries Government Documents Department