579 Matching Results

Search Results

Advanced search parameters have been applied.

A New Generation Chemical Flooding Simulator

Description: The premise of this research is that a general-purpose reservoir simulator for several improved oil recovery processes can and should be developed so that high-resolution simulations of a variety of very large and difficult problems can be achieved using state-of-the-art computing and computers. Such a simulator is not currently available to the industry. The goal of this proposed research is to develop a new-generation chemical flooding simulator that is capable of efficiently and accurately simulating oil reservoirs with at least a million gridblocks in less than one day on massively parallel computers. Task 1 is the formulation and development of solution scheme, Task 2 is the implementation of the chemical module, and Task 3 is validation and application. We have made significant progress on all three tasks and we are on schedule on both technical and budget. In this report, we will detail our progress on Tasks 1 through 3 for the first six months of the project.
Date: March 1, 2002
Creator: Pope, Gary A.; Sepehrnoori, Kamy & Delshad, Mojdeh
Partner: UNT Libraries Government Documents Department

Productivity and Injectivity of Horizontal Wells

Description: This quarterly report is based on the last activity above. It gives a brief account of the work and the complete study will be included in the next Annual Report of the project.
Date: November 8, 1999
Creator: Arababi, Sepehr; Aziz, Khalid; Hayashida, Yasuyuki & Hewett, Thomas
Partner: UNT Libraries Government Documents Department

Productivity and Injectivity of Horizontal Wells

Description: The generation of suitable simulation grids for heterogeneous media and specific discretization issues that arise. Streamlines and equipotentials are used to define our base grids. Since streamlines are concentrated in high velocity regions they provide a natural means of clustering fine grid cells in crucial flow regions. For complex configurations and particularly for strongly heterogeneous regions the resulting grid cells can become very distorted due to extremely high curvatures. Two types of cell centered formulation are examined together with a cell vertex-point distributed scheme. Important distinctions are found for highly distorted cells. The new grids are tested for accuracy in terms of critical breakthrough parameters and it is shown that a much higher level of grid resolution is required by conventional simulators in order to achieve results that are comparable with those computed on relatively coarse streamline-potential grids.
Date: November 16, 1999
Creator: Aziz, Khalid; Hewett, Thomas A.; Arbabi, Sepehr & Smith, Marilyn
Partner: UNT Libraries Government Documents Department

A New Generation Chemical Flooding Simulator

Description: The premise of this research is that a general-purpose reservoir simulator for several improved oil recovery processes can and should be developed so that high-resolution simulations of a variety of very large and difficult problems can be achieved using state-of-the-art computing and computers. Such a simulator is not currently available to the industry. The goal of this proposed research is to develop a new-generation chemical flooding simulator that is capable of efficiently and accurately simulating oil reservoirs with at least a million gridblocks in less than one day on massively parallel computers. Task 1 is the formulation and development of solution scheme, Task 2 is the implementation of the chemical module, and Task 3 is validation and application.
Date: September 30, 2002
Creator: Pope, Gary A.; Sepehrnoori, Kamy & Delshad, Mojdeh
Partner: UNT Libraries Government Documents Department

A Framework to Design and Optimize Chemical Flooding Processes

Description: The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.
Date: November 1, 2004
Creator: Delshad, Mojdeh; Pope, Gary A. & Sepehrnoori, Kamy
Partner: UNT Libraries Government Documents Department

Scaled physical model studies of the steam drive process. First annual report, September 1977-September 1978

Description: Scaling laws of the heat transport mechanism in steam displacement processes are developed based upon an integral energy balance equation. Unlike the differential approach adopted by previous workers, the above scaling laws do not necessitate the use of any empirical correction factor as has been done in previous scaling calculations. The results provide a complete and consistent scale-down of the energy transport behavior, which is the critical mechanism for the success of a steam injection process. In the course of the study, the scaling problems associated with relative permeability and capillary pressure are also discussed. A method which has often been used in scaling nonthermal displacement processes is applied to reduce errors due to scaling in relative permeability. Both dimensional and inspectional analyses are applied to illustrate their use in steam processes. Scale-up laws appeared in the literature and those used in this study are compared and numerical examples are given.
Date: December 1, 1980
Creator: Doscher, T M
Partner: UNT Libraries Government Documents Department

Fracture opening/propagation behavior and their significance on pressure-time records during hydraulic fracturing

Description: Hydraulic fracturing with constant fluid injection rate was numerically modeled for a pair of rectangular longitudinal fractures intersecting a wellbore in an impermeable rock mass, and numerical calculations have been performed to investigate the relations among the form of pressure-time curves, fracture opening/propagation behavior and permeability of the mechanically closed fractures. The results have shown that both permeability of the fractures and fluid injection rate significantly influence the form of the pressure-time relations on the early stage of fracture opening. Furthermore it has been shown that wellbore pressure during fracture propagation is affected by the pre-existing fracture length.
Date: January 1, 1992
Creator: Kojima, Takashi; Nakagawa, Yasuhiko; Matsuki, Koji & Hashida, Toshiyuki
Partner: UNT Libraries Government Documents Department

"Smart" Multifunctional Polymers for Enhanced Oil Recovery

Description: Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.
Date: March 20, 2007
Creator: McCormick, Charles & Lowe, Andrew
Partner: UNT Libraries Government Documents Department

Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

Description: Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate-scale tests will be used ...
Date: January 16, 2009
Creator: Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark et al.
Partner: UNT Libraries Government Documents Department

A Framework to Design and Optimize Chemical Flooding Processes

Description: The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.
Date: August 31, 2006
Creator: Delshad, Mojdeh; Pope, Gary A. & Sepehrnoori, Kamy
Partner: UNT Libraries Government Documents Department

CO{sub 2} Hugg-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, 2nd quarter 1996

Description: The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is considered a timely effort for near-term goals.
Date: July 25, 1996
Partner: UNT Libraries Government Documents Department

West Hackberry Tertiary Project. Quarterly technical progress report, April 1, 1996--June 30, 1996

Description: The goal of the West Hackberry Tertiary Project is to demonstrate the technical and economic feasibility of combining air injection with the Double Displacement Process for tertiary oil recovery. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering oil through gravity drainage. The novel aspect of this project is the use of air as the injection fluid. The target reservoirs for the project are the Camerina sands located on the west and north flanks of West Hackberry Field in Cameron Parish, Louisiana. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process can economically recover oil in reservoirs where tertiary oil recovery is presently uneconomic.
Date: July 11, 1996
Creator: Gillham, T.; Cerveny, B. & Turek, E.
Partner: UNT Libraries Government Documents Department

First-year progress report

Description: A very extensive experimental and computational project on in-cylinder injection via a liquid-only pulsating-poppet injector was completed with many new interesting developments (e.g. assessment of exciplex errors, liquid sheet computation, new way of comparing measurements and computations).
Date: October 1, 1997
Partner: UNT Libraries Government Documents Department

Use of INSAR in surveillance and control of a large field project

Description: In this paper, we introduce a new element of our [1] multilevel, integrated surveillance and control system: satellite Synthetic Aperture Radar interferometry (InSAR) images of oil field surface. In particular, we analyze five differential InSAR images of the Belridge Diatomite field, CA, between 11/98 and 12/99. The images have been reprocessed and normalized to obtain the ground surface displacement rate. In return, we have been able to calculate pixel-by-pixel the net subsidence of ground surface over the entire field area. The calculated annual subsidence volume of 19 million barrels is thought to be close to the subsidence at the top of the diatomite. We have also compared the 1999 rate of surface displacement from the satellite images with the surface monument triangulations between 1942 and 1997. We have found that the maximum rate of surface subsidence has been steadily increasing from -0.8 ft/year in 1988-97 to -1 ft/year in 1998-99. The respective rates of uplift of the field fringes also increased from 0.1 ft/year to 0.24 ft/year. In 1999, the observed subsidence rate exceeded by 4.5 million barrels the volumetric deficit of fluid injection.
Date: June 1, 2000
Creator: Patzek, T.W. & Silin, D.B.
Partner: UNT Libraries Government Documents Department

Optimization of Fluid Front Dynamics in Porous Media Using Rate Control: I. Equal Mobility Fluids

Description: In applications involving this injection of a fluid in a porous medium to displace another fluid, a main objective is the maximization of the displacement efficiency. For a fixed arrangement of injection and production points (sources and sinks), such optimization is possible by controlling the injection rate policy. Despite its practical relevance, however, this aspect has received scant attention in the literature. In this paper, a fundamental approach based on optimal control theory, for the case when the fluids are miscible, of equal viscosity and in the absence of dispersion and gravity effects. Both homogeneous and heterogeneous porous media are considered. From a fluid dynamics viewpoint, this is a problem in the deformation of material lines in porous media, as a function of time-varying injection rates.
Date: October 18, 1999
Creator: Sundaryanto, Bagus & Yortsos, Yanis C.
Partner: UNT Libraries Government Documents Department

A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

Description: The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.
Date: July 2005
Creator: Delshad, Mojdeh; Pope, Gary A. & Sepehrnoori, Kamy
Partner: UNT Libraries Government Documents Department

A New Generation Chemical Flooding Simulator

Description: The premise of this research is that a general-purpose reservoir simulator for several improved oil recovery processes can and should be developed so that high-resolution simulations of a variety of very large and difficult problems can be achieved using state-of-the-art algorithms and computers. Such a simulator is not currently available to the industry. The goal of this proposed research is to develop a new-generation chemical flooding simulator that is capable of efficiently and accurately simulating oil reservoirs with at least a million gridblocks in less than one day on massively parallel computers. Task 1 is the formulation and development of solution scheme, Task 2 is the implementation of the chemical module, and Task 3 is validation and application. We have made significant progress on all three tasks and we are on schedule on both technical and budget. In this report, we will detail our progress on Tasks 1 through 3 for the first half of the third year of the project.
Date: May 1, 2004
Creator: Pope, Gary A.; Sepehrnoori, Kamy & Delshad, Mojdeh
Partner: UNT Libraries Government Documents Department

Conformance Improvement Using Gels

Description: This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.
Date: September 26, 2002
Creator: Seright, Randall S.; Schrader; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah & Marin, Amaury
Partner: UNT Libraries Government Documents Department

Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery

Description: The objective of this project was to develop a knowledge base that is helpful for the design of improved processes for mobilizing and producing oil left untapped using conventional techniques. The main goal was to develop and evaluate mixtures of new or modified surfactants for improved oil recovery. In this regard, interfacial properties of novel biodegradable n-alkyl pyrrolidones and sugar-based surfactants have been studied systematically. Emphasis was on designing cost-effective processes compatible with existing conditions and operations in addition to ensuring minimal reagent loss.
Date: March 4, 2002
Creator: Somasundaran, Prof. P.
Partner: UNT Libraries Government Documents Department

Conformance Improvement Using Gels

Description: This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.
Date: September 26, 2002
Creator: Seright, Randall S.; Schrader, Richard; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah; Gary, Raven et al.
Partner: UNT Libraries Government Documents Department

Visualization and simulation of immiscible displacement in fractured systems using micromodels: Imbibition

Description: A study of imbibition processes in micromodel geometries that mimic a matrix-fracture system was undertaken. Experiments in glass micromodels and pore network simulation were conducted. It was observed that, at low capillary number values the wetting fluid preferentially invaded the matrix. Two critical capillary numbers were identified, one for the start of penetration in the fracture when the viscosity ratio was much less than one, and another for which the rate of propagation of the front in the fracture is the same with that in the matrix, when the viscosity ratio was greater than one. These critical capillary numbers were well matched with the results of a pore network simulation. We also developed a simplified theory for both critical numbers. Free imbibition in fractured system was investigated an(] compared favorably with pore network simulation. This process first involves the ra.pi(i invasion of the matrix, followed by the subsequent penetration of the fracture.
Date: July 1, 1995
Creator: Hadghighi, M. & Yortsos, Y.C.
Partner: UNT Libraries Government Documents Department

Scaled physical model studies of the steam drive process. Second annual report, September 1978-September 1979

Description: A scaled physical model was operated to simulate steam drive operations in five-spot patterns with reservoir and operational parameters similar to those encountered in California reservoirs. The goal of this study was to elucidate the role of two important controllable parameters, viz., steam injection rate and steam quality and to explore the role of two important factors, oil viscosity and reservoir permeability on the performance of the steam drive. In addition, the influence of bottom water and a basal permeable layer were investigated. The experiments demonstrated that there is an optimum injection rate; that in the vicinity of this optimum an increased quantity results in improved oil steam ratios; that the viscosity of the oil at steam temperature, raised to a fractional power, 0.5, appears to correlate with oil production; that permeabilities in the darcy range have little effect on performance, but an increasing one with low viscosity oil, and that bottom water, which facilitates injection, results in toorer early performance but one which eventually rivals the oil/steam ratio of a uniform reservoir at a somewhat higher recovery of original oil in place. It has been concluded that the major value of the physical model is in describing the role of the reservoir and operational parameters of a class of steam drive operations rather than providing an exact prediction of a given operation.The problem of supplying the latter lies in the virtually impossible-to-define distribution of oil, gas and water in the reservoir on initiating the steam drive. Two years of this project have now been completed. During the forthcoming final phase of the program, effort will be devoted to studying the relative effects of solvent and gas addition to the steam, of diurnal injection, and of (horizontal) well placement.
Date: February 1, 1981
Creator: Dosher, T.M.
Partner: UNT Libraries Government Documents Department