1,101 Matching Results

Search Results

Advanced search parameters have been applied.

Sorbents for mercury removal from flue gas

Description: A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.
Date: January 1998
Creator: Granite, Evan J.; Hargis, Richard A. & Pennline, Henry W.
Partner: UNT Libraries Government Documents Department

The potential for clean energy production using oxy-fuel combustion and integrated pollutant removal

Description: Effective remediation of flue gas produced by an oxy-fuel coal combustion process has been proven at bench scale in the course of cooperative research between USDOE’s Albany Research Center (ARC) and Jupiter Oxygen Corporation. All combustion gas pollutants were captured, including CO2 which was compressed to a liquefied state suitable for sequestration. Current laboratory-scale research and the future of combined oxy-fuel/IPR systems are discussed.
Date: May 1, 2005
Creator: Ochs, Thomas L.; Oryshchyn, Danylo B.; Weber, Thomas (Jupiter Oxygen Corporation, Schiller Park, IL 60176). & Summers, Cathy A.
Partner: UNT Libraries Government Documents Department

Development of Novel Activated Carbon-Based Adsorbents for Control of Mercury Emission From Coal-Fired Power Plants

Description: The overall objective of this study is to evaluate pertinent design and operational parameters that would enable successful application of activated carbon adsorption for the reduction of mercury emissions from coal-fired power plants. The study will evaluate the most suitable impregnate such as sulfur, chloride and other chelating agents for its ability to enhance the adsorptive capacity of activated carbon for mercury vapor under various process conditions. The main process variables to be evaluated include temperature, mercury concentration and speciation, relative humidity, oxygen content, and presence of SO2 and NOx in the flue gas. The optimal amount of impregnate for each of these carbons will be determined based on the exhibited performance. Another important parameter which governs the applicability of adsorption technology for the flue gas clean up is the rate at which vapor phase mercury is being removed from the flue gas by activated carbon. Therefore, the second part of this study will evaluate the adsorption kinetics using the impregnated activated carbons listed above. The rate of mercury uptake will also be evaluated under the process conditions that are representative of coal-fired power plants. Concerned with the ability of the adsorbed mercury to migrate back into the environment once saturated adsorbent is removed from the system, the study will also focus on the mercury desorption rate as a function of the type of impregnate, loading conditions, and the time of contact prior to disposal.
Date: September 8, 1997
Creator: Vidic, Radisav D.
Partner: UNT Libraries Government Documents Department

High SO2 Removal Efficiency Testing

Description: This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 January through 31 March 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company�s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy�s Merom Station (Option I), Southwestern Electric Power Company�s Pirkey Station (Option II), PSI Energy�s Gibson Station (Option III), Duquesne Light�s Elrama Station (Option IV), and New York State Electric and Gas Corporation�s (NYSEG) Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is planned at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the second quarter of calendar year 1997. Section 5 contains a brief acknowledgement.
Date: April 23, 1997
Creator: Blythe, Gary
Partner: UNT Libraries Government Documents Department

Novel Process for Removal and Recovery of Vapor Phase Mercury

Description: We demonstrated in the Phase I program all key attributes of a new technology for removing mercury from flue gases, namely, a) removal of greater than 95% of both elemental and oxidized forms of mercury, both in the laboratory and in the field b) regenerability of the sorbent c) ability to scale up, and d) favorable economics. The Phase I program consisted of four tasks other than project reporting: Task I-1 � Screen Sorbent Configurations in the Laboratory Task I-2 � Design and Fabricate Bench-Scale Equipment Task I-3 � Test Bench-Scale Equipment on Pilot Combustor Task I-4 � Evaluate Economics Based on Bench-Scale Results In Task I-1, we demonstrated that the sorbents are thermally durable and are regenerable through at least 55 cycles of mercury uptake and desorption. We also demonstrated two low-pressure- drop configurations of the sorbent, namely, a particulate form and a monolithic form. We showed that the particulate form of the sorbent would take up 100% of the mercury so long as the residence time in a bed of the sorbent exceeded 0.1 seconds. In principle, the particulate form of the sorbent could be imbedded in the back side of a higher temperature bag filter in a full-scale application. With typical bag face velocities of four feet per minute, the thickness of the particulate layer would need to be about 2000 microns to accomplish the uptake of the mercury. For heat transfer efficiency, however, we believed the monolithic form of the sorbent would be the more practical in a full scale application. Therefore, we purchased commercially-available metallic monoliths and applied the sorbent to the inside of the flow channels of the monoliths. At face velocities we tested (up to 1.5 ft/sec), these monoliths had less than 0.05 inches of water pressure drop. We tested the monolithic form ...
Date: March 9, 1998
Creator: Greenwell, Collin; Roberts, Daryl L.; Albiston, Jason; Stewart, Robin & Broderick, Tom
Partner: UNT Libraries Government Documents Department

Task 2.0 - Air Quality Assessment, Control, and Analytical Methods Subtask 2.11 - Lactic Acid FGD Additives From Sugar Beet Wastewater

Description: Organic buffers maintain the pH of the scrubber slurry in flue gas desulfurization (FGD) as the SO2 dissolves at the air-liquid interface. Inexpensive acids with an appropriate pKa are required for this application. The pKa of lactic acid (3.86) is between that of the interface and the recirculating slurry and will make soluble calcium ion available in large amounts. Currently lactic acid is somewhat expensive for this use, but this project will develop a new source of inexpensive lactate. Microbial action during the storage and processing of sugar beets forms lactic acid in concentrations as high 14 g/L in the processing water. The concentrations are lower than those occurring in conventional fermentation production of lactic acids, but since a considerable amount of water is involved in the processing of sugar beets in the Red River Valley (1 million gallons/day), a substantial amount of lactic acid or calcium lactate could be recovered as a by- product for use in FGD and other applications.
Date: February 1, 1998
Creator: Olson, Edwin S.
Partner: UNT Libraries Government Documents Department

High SO2 Removal Efficiency Testing

Description: This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 April through 30 June 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company�s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy�s Merom Station (Option I), Southwestern Electric Power Company�s Pirkey Station (Option II), PSI Energy�s Gibson Station (Option III), Duquesne Light�s Elrama Station (Option IV), and New York State Electric and Gas Corporation�s Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is being conducted at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the third quarter of calendar year 1997. Section 5 contains a brief acknowledgment.
Date: July 29, 1997
Creator: Blythe, Gary
Partner: UNT Libraries Government Documents Department

High SO2 Removal Efficiency Testing

Description: This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO Removal Testing," for 2 the time period 1 October through 31 December 1996. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO removal efficiency. The upgrades being 2 evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company�s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy�s Merom Station (Option I), Southwestern Electric Power Company�s Pirkey Station (Option II), PSI Energy�s Gibson Station (Option III), Duquesne Light�s Elrama Station (Option IV), and New York State Electric and Gas Corporation�s Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing has been planned at the Big Bend Station, and that testing commenced during the current quarter. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the first quarter of calendar year 1996. Section 5 contains a brief acknowledgment.
Date: February 12, 1997
Creator: Blythe, Gary
Partner: UNT Libraries Government Documents Department

Task 2.8 - Mercury Speciation and Capture in Scubber Solutions

Description: U.S. Environmental Protection Agency (EPA) investigation into health risks associated with mercury emissions from utility steam generators, municipal waste combustion units, and other sources was mandated by the Clean Air Act Amendments (CAAA) of 1990. In anticipation of mercury emission regulation, attention has been focused on quantification of mercury emissions, which require verifiable sampling and analytical techniques. Several sampling and analytical methods are currently under the final stages of development as well as a variety of emission control methods. In particular, wet scrubber systems designed for S2 control in coal-fired utilities have been targeted for mercury control. Conventional wet-scrubbers remove mercury in a variety of soluble oxidized forms. Oxidized mercury is highly water-soluble and can be removed by scrubber slurry, theoretically limited only by gas-film mass transfer. However, since some oxidized mercury forms such as HgClz are borh soluble and volatile, the final fate of mercury trapped in scrubber solutions is unclear. Elemental mercury is not water-soluble, remaining in the vapor state at temperatures through pollution control devices and exiting the stack into the environment. However, notable exceptions to this rule exist. Depending on the type of mercury-sampling method used, an increase ofs 10% in elemental mercury concentrations across wet scrubbers has been metiured but is yet unconllrmed. Also, significant amounts of elemental mercury (metallic form) have been removed during wet scrubber maintenance. In addition, questions concerning 1) the initial speciation between oxidized and elemental forms of mercury in flue gas from coal- fired boilers and 2) the effects of scrubber slurry composition and pH on the mercury species have been raised.
Date: August 1, 1997
Creator: Ness, Sumitra R.
Partner: UNT Libraries Government Documents Department

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

Description: Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue gases were studied. The gas phase reaction between Hg0 and SCl2 is shown to be more rapid than the gas phase reaction with chlorine, and the second order rate constant was 9.1(+-0.5) x 10-18 mL-molecules-1cdots-1 at 373oK. Nitric oxide (NO) inhibited the gas phase reaction of Hg0 with sulfur-chlorine compounds. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg0 removal is about 90percent with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90percent of Hg0 can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3percent of SCl2 or S2Cl2 is used. Unlike gas phase reactions, NO exhibited little effect on Hg0 reactions with SCl2 or S2Cl2 on flyash or activated carbon. Mercuric sulfide was identified as one of the principal products of the Hg0/SCl2 or Hg0/S2Cl2 reactions. Additionally, about 8percent of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.
Date: July 2, 2008
Creator: Chang, Shih-Ger; Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua; Dod, Ray et al.
Partner: UNT Libraries Government Documents Department

High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

Description: The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.
Date: September 20, 2002
Creator: Cengiz, P.A.; Ho, K.K.; Abbasian, J. & Lau, F.S.
Partner: UNT Libraries Government Documents Department

Fireside Corrosion

Description: Oxy-fuel fireside research goals are: (1) determine the effect of oxyfuel combustion on fireside corrosion - flue gas recycle choice, staged combustion ramifications; and (2) develop methods to use chromia solubility in ash as an ash corrosivity measurement - synthetic ashes at first, then boiler and burner rig ashes.
Date: July 14, 2011
Creator: Holcomb, Gordon
Partner: UNT Libraries Government Documents Department

Fireside Corrosion USC Steering

Description: Oxy-Fuel Fireside Research goals are: (1) Determine the effect of oxy-fuel combustion on fireside corrosion - (a) Flue gas recycle choice, Staged combustion ramifications, (c) JCOAL Collaboration; and (2) Develop methods to use chromia solubility in ash as an 'ash corrosivity' measurement - (a) Synthetic ashes at first, then boiler and burner rig ashes, (b) Applicable to SH/RH conditions.
Date: September 7, 2011
Creator: Holcomb, G. R. & Tylczak, J.
Partner: UNT Libraries Government Documents Department

Sequestration of CO2 in Mixtures of Caustic Byproduct and Saline Waste Water

Description: Ex-situ carbonation of mixtures of caustic byproduct materials and produced oil-field brine provides a niche opportunity to sequester anthropogenic CO2, while concomitantly reducing the basicity of the reactive slurry. A series of tests were conducted to investigate a novel reaction concept designed to achieve neutralization of mixtures of acidic oil field produced brine and caustic industrial byproducts while sequestering substantial quantities of anthropogenic carbon dioxide (C02) in a mixed-flow reactor. Experiments were conducted to determine the COrbearing capacity of reactive mixtures of brine from the Oriskany Sandstone Formation with three caustic industrial byproducts: flue gas desulfurization (FGO) spray dryer ash, Class C fly ash subbituminous coal combustion byproduct, and bauxite residue slurry from the alumina production process. Reactions were conducted in a closed, well-mixed (1,500 rpm) reactor with gas composed of 29.46% vol./vol. CO2 balanced by nitrogen gas (N2) fed at a rate of 300mL/min. Reactions were carried out at ambient conditions. Results show linear relationships between caustic byproduct addition and COrbearing capacity, with relatively small impact of brine addition as compared to deionized water addition. FGO spray dryer ash/brine mixtures exhibited higher CO2 reactivity than those using Class C fly ash (0.759 moles CO2, at 23.6% solids by weight and 0.036 moles CO2 at 23.3% solids by weight, respectively). Bauxite residue exhibited moderate capacities in mixtures with higher percent solids (0.335 moles CO2 in 40% solids bauxite residue slurry). Carbonation capacity of caustic byproduct/ acidic brine mixtures was shown to increase linearly with respect to percent caustic byproduct addition, but enhanced mineral carbonate precipitation resulting from synergistic reaction of brine cations with increased dissolved carbonate species was not observed in the short term.
Date: January 2009
Creator: Dilmore, R. M.; Howard, B. H.; Soong, Y.; Griffith, C.; Hedges, S. W.; DeGalbo, A. D. et al.
Partner: UNT Libraries Government Documents Department

Mercury Control With The Advanced Hybrid Particulate Collector

Description: This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing ...
Date: December 31, 2003
Creator: Benson, Steven A.; Miller, Stanley J.; Crocker, Charlene R.; Galbreath, Kevin C.; Laumb, Jason D.; Zola, Jill M. et al.
Partner: UNT Libraries Government Documents Department

Mercury Control With The Advanced Hybrid Particulate Collector

Description: This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-FC26-01NT41184 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the original five-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included benchscale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task was ...
Date: December 31, 2004
Creator: Miller, Stanley J.; Zhuang, Ye & Almlie, Jay C.
Partner: UNT Libraries Government Documents Department

Mercury Control With The Advanced Hybrid Paticulate Collector

Description: This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this ...
Date: September 30, 2004
Creator: Miller, Stanley J.; Zhuang, Ye & Almlie, Jay
Partner: UNT Libraries Government Documents Department

Mercuty Control With The Advanced Hybrid Particulate Collector

Description: This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at ...
Date: March 31, 2003
Creator: Zhuang, Ye; Miller, Stanley J. & Olderbak, Michelle R.
Partner: UNT Libraries Government Documents Department

Mercury Control With The Advanced Hybrid Particulate Collector

Description: This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing ...
Date: March 31, 2004
Creator: Benson, Steven A.; Miller, Stanley J.; Crocker, Charlene R.; Galbreath, Kevin C.; Laumb, Jason D.; Zola, Jill M. et al.
Partner: UNT Libraries Government Documents Department

Critical review of mercury chemistry in flue gas.

Description: Mercury (Hg) and its compounds have long been recognized as potentially hazardous to human health and the environment. Many man-made sources of mercury have been reduced in recent years through process changes and control measures. However, emissions of mercury from coal-fired power plants, while exceedingly dilute by the usual pollution standards, still constitute a major source when considered in the aggregate. Concerns over those emissions and the prospect of impending emissions regulations have led to a wide range of research projects dealing with the measurement and control of mercury in flue gas. This work has made considerable progress in improving the understanding of mercury emissions and their behavior, but inconsistencies and unexpected results have also shown that a better understanding of mercury chemistry is needed. To develop a more complete understanding of where additional research on mercury chemistry is needed, the U.S. Department of Energy (DOE) asked Argonne National Laboratory (Argonne) to conduct a critical review of the available information as reported in the technical literature. The objectives were to summarize the current state of the art of chemistry knowledge, identify significant knowledge gaps, and recommend future research to resolve those gaps. An initial evaluation of potential review topics indicated that the scope of the review would need to be limited and focused on the most important topics relative to mercury control. To aid in this process, Argonne developed a brief survey that was circulated to researchers in the field who could help identify and prioritize the many aspects of the problem. The results of the survey were then used to design and guide a highly focused literature search that identified key papers for analysis. Each paper was reviewed, summarized, and evaluated for the relevance and quality of the information presented. The results of that work provided the basis for ...
Date: November 27, 2006
Creator: Mendelsohn, M. H. & Livengood, C. D.
Partner: UNT Libraries Government Documents Department

Catalyst Additives to Enhance Mercury Oxidation and Capture

Description: Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal are being performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation correlations will be developed for each catalyst. The contributions of temperature are also being investigated. SO2 oxidation is also being investigated for each test condition.
Date: December 31, 2005
Creator: Gale, Thomas K.
Partner: UNT Libraries Government Documents Department

NOx Control Options and Integration for US Coal Fired Boilers

Description: This is the thirteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. The corrosion probe task is proceeding: Two plant visits were made to prepare for field testing and shakedown tests for the probes were conducted at the University of Utah''s L1500 furnace. Corrosion probes will be installed at the Gavin Plant site in the next quarter. Laboratory studies of SCR catalyst continued this quarter. FTIR studies of catalyst sulfation and of adsorption of NH3 and NO were continued at BYU. NO activities have been measured for a number of samples of BYU catalyst and insights have been gained from the results. Plans are being detailed to test monolith and plate catalysts exposed in the field. In this quarter, the catalysts in the slipstream reactor at AEP's Rockport plant were exposed to the dusty flue gas for 1695 hours. Thus the cumulative catalyst exposure to flue gas rose from 980 hours last quarter to 2677 hours in this quarter. Loss of catalyst activity was noted between April (when the catalysts were fresh) and August. Further analysis of activity data will be needed.
Date: September 30, 2003
Creator: Bockelie, Mike; Davis, Kevin; Linjewile, Temi; Senior, Connie; Eddings, Eric; Whitty, Kevin et al.
Partner: UNT Libraries Government Documents Department

GAS INJECTION/WELL STIMULATION PROJECT

Description: Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.
Date: December 1, 2005
Creator: Godwin, John K.
Partner: UNT Libraries Government Documents Department