1,602 Matching Results

Search Results

Advanced search parameters have been applied.

Sorbents for mercury removal from flue gas

Description: A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.
Date: January 1998
Creator: Granite, Evan J.; Hargis, Richard A. & Pennline, Henry W.
Partner: UNT Libraries Government Documents Department

The potential for clean energy production using oxy-fuel combustion and integrated pollutant removal

Description: Effective remediation of flue gas produced by an oxy-fuel coal combustion process has been proven at bench scale in the course of cooperative research between USDOE’s Albany Research Center (ARC) and Jupiter Oxygen Corporation. All combustion gas pollutants were captured, including CO2 which was compressed to a liquefied state suitable for sequestration. Current laboratory-scale research and the future of combined oxy-fuel/IPR systems are discussed.
Date: May 1, 2005
Creator: Ochs, Thomas L.; Oryshchyn, Danylo B.; Weber, Thomas (Jupiter Oxygen Corporation, Schiller Park, IL 60176). & Summers, Cathy A.
Partner: UNT Libraries Government Documents Department

Development of Novel Activated Carbon-Based Adsorbents for Control of Mercury Emission From Coal-Fired Power Plants

Description: The overall objective of this study is to evaluate pertinent design and operational parameters that would enable successful application of activated carbon adsorption for the reduction of mercury emissions from coal-fired power plants. The study will evaluate the most suitable impregnate such as sulfur, chloride and other chelating agents for its ability to enhance the adsorptive capacity of activated carbon for mercury vapor under various process conditions. The main process variables to be evaluated include temperature, mercury concentration and speciation, relative humidity, oxygen content, and presence of SO2 and NOx in the flue gas. The optimal amount of impregnate for each of these carbons will be determined based on the exhibited performance. Another important parameter which governs the applicability of adsorption technology for the flue gas clean up is the rate at which vapor phase mercury is being removed from the flue gas by activated carbon. Therefore, the second part of this study will evaluate the adsorption kinetics using the impregnated activated carbons listed above. The rate of mercury uptake will also be evaluated under the process conditions that are representative of coal-fired power plants. Concerned with the ability of the adsorbed mercury to migrate back into the environment once saturated adsorbent is removed from the system, the study will also focus on the mercury desorption rate as a function of the type of impregnate, loading conditions, and the time of contact prior to disposal.
Date: September 8, 1997
Creator: Vidic, Radisav D.
Partner: UNT Libraries Government Documents Department

High SO2 Removal Efficiency Testing

Description: This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 January through 31 March 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company�s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy�s Merom Station (Option I), Southwestern Electric Power Company�s Pirkey Station (Option II), PSI Energy�s Gibson Station (Option III), Duquesne Light�s Elrama Station (Option IV), and New York State Electric and Gas Corporation�s (NYSEG) Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is planned at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the second quarter of calendar year 1997. Section 5 contains a brief acknowledgement.
Date: April 23, 1997
Creator: Blythe, Gary
Partner: UNT Libraries Government Documents Department

Novel Process for Removal and Recovery of Vapor Phase Mercury

Description: We demonstrated in the Phase I program all key attributes of a new technology for removing mercury from flue gases, namely, a) removal of greater than 95% of both elemental and oxidized forms of mercury, both in the laboratory and in the field b) regenerability of the sorbent c) ability to scale up, and d) favorable economics. The Phase I program consisted of four tasks other than project reporting: Task I-1 � Screen Sorbent Configurations in the Laboratory Task I-2 � Design and Fabricate Bench-Scale Equipment Task I-3 � Test Bench-Scale Equipment on Pilot Combustor Task I-4 � Evaluate Economics Based on Bench-Scale Results In Task I-1, we demonstrated that the sorbents are thermally durable and are regenerable through at least 55 cycles of mercury uptake and desorption. We also demonstrated two low-pressure- drop configurations of the sorbent, namely, a particulate form and a monolithic form. We showed that the particulate form of the sorbent would take up 100% of the mercury so long as the residence time in a bed of the sorbent exceeded 0.1 seconds. In principle, the particulate form of the sorbent could be imbedded in the back side of a higher temperature bag filter in a full-scale application. With typical bag face velocities of four feet per minute, the thickness of the particulate layer would need to be about 2000 microns to accomplish the uptake of the mercury. For heat transfer efficiency, however, we believed the monolithic form of the sorbent would be the more practical in a full scale application. Therefore, we purchased commercially-available metallic monoliths and applied the sorbent to the inside of the flow channels of the monoliths. At face velocities we tested (up to 1.5 ft/sec), these monoliths had less than 0.05 inches of water pressure drop. We tested the monolithic form ...
Date: March 9, 1998
Creator: Greenwell, Collin; Roberts, Daryl L.; Albiston, Jason; Stewart, Robin & Broderick, Tom
Partner: UNT Libraries Government Documents Department

Task 2.0 - Air Quality Assessment, Control, and Analytical Methods Subtask 2.11 - Lactic Acid FGD Additives From Sugar Beet Wastewater

Description: Organic buffers maintain the pH of the scrubber slurry in flue gas desulfurization (FGD) as the SO2 dissolves at the air-liquid interface. Inexpensive acids with an appropriate pKa are required for this application. The pKa of lactic acid (3.86) is between that of the interface and the recirculating slurry and will make soluble calcium ion available in large amounts. Currently lactic acid is somewhat expensive for this use, but this project will develop a new source of inexpensive lactate. Microbial action during the storage and processing of sugar beets forms lactic acid in concentrations as high 14 g/L in the processing water. The concentrations are lower than those occurring in conventional fermentation production of lactic acids, but since a considerable amount of water is involved in the processing of sugar beets in the Red River Valley (1 million gallons/day), a substantial amount of lactic acid or calcium lactate could be recovered as a by- product for use in FGD and other applications.
Date: February 1, 1998
Creator: Olson, Edwin S.
Partner: UNT Libraries Government Documents Department

High SO2 Removal Efficiency Testing

Description: This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 April through 30 June 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company�s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy�s Merom Station (Option I), Southwestern Electric Power Company�s Pirkey Station (Option II), PSI Energy�s Gibson Station (Option III), Duquesne Light�s Elrama Station (Option IV), and New York State Electric and Gas Corporation�s Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is being conducted at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the third quarter of calendar year 1997. Section 5 contains a brief acknowledgment.
Date: July 29, 1997
Creator: Blythe, Gary
Partner: UNT Libraries Government Documents Department

High SO2 Removal Efficiency Testing

Description: This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO Removal Testing," for 2 the time period 1 October through 31 December 1996. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO removal efficiency. The upgrades being 2 evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company�s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy�s Merom Station (Option I), Southwestern Electric Power Company�s Pirkey Station (Option II), PSI Energy�s Gibson Station (Option III), Duquesne Light�s Elrama Station (Option IV), and New York State Electric and Gas Corporation�s Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing has been planned at the Big Bend Station, and that testing commenced during the current quarter. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the first quarter of calendar year 1996. Section 5 contains a brief acknowledgment.
Date: February 12, 1997
Creator: Blythe, Gary
Partner: UNT Libraries Government Documents Department

Task 2.8 - Mercury Speciation and Capture in Scubber Solutions

Description: U.S. Environmental Protection Agency (EPA) investigation into health risks associated with mercury emissions from utility steam generators, municipal waste combustion units, and other sources was mandated by the Clean Air Act Amendments (CAAA) of 1990. In anticipation of mercury emission regulation, attention has been focused on quantification of mercury emissions, which require verifiable sampling and analytical techniques. Several sampling and analytical methods are currently under the final stages of development as well as a variety of emission control methods. In particular, wet scrubber systems designed for S2 control in coal-fired utilities have been targeted for mercury control. Conventional wet-scrubbers remove mercury in a variety of soluble oxidized forms. Oxidized mercury is highly water-soluble and can be removed by scrubber slurry, theoretically limited only by gas-film mass transfer. However, since some oxidized mercury forms such as HgClz are borh soluble and volatile, the final fate of mercury trapped in scrubber solutions is unclear. Elemental mercury is not water-soluble, remaining in the vapor state at temperatures through pollution control devices and exiting the stack into the environment. However, notable exceptions to this rule exist. Depending on the type of mercury-sampling method used, an increase ofs 10% in elemental mercury concentrations across wet scrubbers has been metiured but is yet unconllrmed. Also, significant amounts of elemental mercury (metallic form) have been removed during wet scrubber maintenance. In addition, questions concerning 1) the initial speciation between oxidized and elemental forms of mercury in flue gas from coal- fired boilers and 2) the effects of scrubber slurry composition and pH on the mercury species have been raised.
Date: August 1, 1997
Creator: Ness, Sumitra R.
Partner: UNT Libraries Government Documents Department

High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

Description: The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.
Date: September 20, 2002
Creator: Cengiz, P.A.; Ho, K.K.; Abbasian, J. & Lau, F.S.
Partner: UNT Libraries Government Documents Department

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

Description: Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue gases were studied. The gas phase reaction between Hg0 and SCl2 is shown to be more rapid than the gas phase reaction with chlorine, and the second order rate constant was 9.1(+-0.5) x 10-18 mL-molecules-1cdots-1 at 373oK. Nitric oxide (NO) inhibited the gas phase reaction of Hg0 with sulfur-chlorine compounds. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg0 removal is about 90percent with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90percent of Hg0 can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3percent of SCl2 or S2Cl2 is used. Unlike gas phase reactions, NO exhibited little effect on Hg0 reactions with SCl2 or S2Cl2 on flyash or activated carbon. Mercuric sulfide was identified as one of the principal products of the Hg0/SCl2 or Hg0/S2Cl2 reactions. Additionally, about 8percent of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.
Date: July 2, 2008
Creator: Chang, Shih-Ger; Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua; Dod, Ray et al.
Partner: UNT Libraries Government Documents Department

Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

Description: The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were to be demonstrated, performance goals were set to achieve air emission ...
Date: June 1, 1998
Partner: UNT Libraries Government Documents Department

Designing a scrubber for maintenance

Description: Under Round 4 of the U.S. Department of Energy`s (DOE) Clean Coal Technology program, New York State Electric & Gas Corporation (NYSEG), in partnership with Saarberg-Holter-Umwelttechnik (SHU), Consolidation Coal Company and Stebbins Engineering and Manufacturing Company, has retrofitted a formic acid enhanced forced oxidation wet limestone scrubber on Units I and 2 at the Milliken Steam Electric Station. Units I and 2 are 1950s vintage Combustion Engineering tangentially fired pulverized coal units, which are rated at nominal 150 MW each and operate in balanced draft mode. The Flue Gas Desulfurization (FGD) system for Unit 2 was placed into operation in January 1995 and the Unit I system in June 1995. The project incorporates several unique aspects: low pH operation; a ceramic tile-lined cocurrent/countercurrent, split module absorber; a wet stack supported on the roof of the FGD building; and closed loop, zero liquid discharge operation that produces commercial grade gypsum and calcium chloride brine. The project objectives include 98% SO{sub 2} removal efficiency while burning high sulfur coal, the production of marketable byproducts to minimize solid waste disposal, zero wastewater discharge, space-saving design, and minimization of maintenance requirements of a wet scrubber. The paper provides a brief overview of the project scrubber design relating to maintenance considerations. A discussion of the early results of the maintenance history is also provided. Repair techniques that have been developed and tested for ceramic tile lined modules are included. 1 fig.
Date: December 1, 1996
Creator: Mahlmeister, M.E.; Baron, E.S. & Watts, J.
Partner: UNT Libraries Government Documents Department

Development of the Radiation Stabilized Distributed Flux Burner, Phase II Final Report

Description: This report covers progress made during Phase 2 of a three-phase DOE-sponsored project to develop and demonstrate the Radiation Stabilized Distributed Flux burner (also referred to as the Radiation Stabilized Burner, or RSB) for use in industrial watertube boilers and process heaters. The goal of the DOE-sponsored work is to demonstrate an industrial boiler burner with NOx emissions below 9 ppm and CO emissions below 50 ppm (corrected to 3% stack oxygen). To be commercially successful, these very low levels of NOx and CO must be achievable without significantly affecting other measures of burner performance such as reliability, turndown, and thermal efficiency. Phase 1 of the project demonstrated that sub-9 ppm NOx emissions and sub-50 ppm CO emissions (corrected to 3% oxygen) could be achieved with the RSB in a 3 million Btu/Hr laboratory boiler using several methods of NOx reduction. The RSB was also tested in a 60 million Btu/hr steam generator used by Chevron for Thermally Enhanced Oil Recovery (TEOR). In the larger scale tests, fuel staging was demonstrated, with the RSB consistently achieving sub-20 ppm NOx and as low as 10 ppm NOx. Large-scale steam generator tests also demonstrated that flue gas recirculation (FGR) provided a more predictable and reliable method of achieving sub-9 ppm NOx levels. Based on the results of tests at San Francisco Thermal and Chevron, the near-term approach selected by Alzeta for achieving low NOx is to use FGR. This decision was based on a number of factors, with the most important being that FGR has proved to be an easier approach to transfer to different facilities and boiler designs. In addition, staging has proved difficult to implement in a way that allows good combustion and emissions performance in a fully modulating system. In Phase 3 of the project, the RSB will be ...
Date: June 1, 1997
Creator: Webb, A. & Sullivan, J.D.
Partner: UNT Libraries Government Documents Department

A Summary of Experiments in Converting Copper Oxide Process Regenerator Off-Gases to Elemental Sulfur, CRADA 97-F006, Final Report

Description: Sorbent Technologies Corporation (Sorbtech) of Twinsburg, Ohio has developed a new technology for converting SO{sub 2}-rich gas streams directly to elemental sulfur. Key to the technology is a special catalyst that promotes the reaction of SO{sub 2} with reformed natural gas. The technology evolved from earlier flue-gas desulfurization (FGD) work that Sorbtech engineers performed in the late 1980's. In 1995, with U.S. Department of Energy (DOE) support, Sorbtech designed and constructed a larger, skid-mounted pilot-test unit suitable for demonstrating the new technology in field tests. This Report summarizes months of preparation work and eight days of testing that were performed at FETC'S facilities during late September and early October, 1997. On the basis of the results of this phase of the project, the following conclusions were made: (1) The chemistry of the new technology was well proven and demonstrated at FETC. The overall S0{sub 2}-to-elemental sulfur yields were typically in the range of 93 to 98 percent. (The project goal was 95 percent, so the goal was exceeded). (2) Sulfur selectivity values, indicating the tendency of S0{sub 2} to be converted to elemental sulfur in preference to H{sub 2}S or COS, were typically in the range of 98 to 100 percent. (3) Bright yellow sulfur of high quality was produced at FETC. (4) The FETC regenerator exhaust gas presented no processing difficulties. Swings in the level of methane in the exhaust gas were handled with relative ease. (5) With the exception of the water condenser, all system components performed well. (6) Condensing of the sulfur after its production was a serious problem at FETC. Solid sulfur deposits built up in the process-gas lines at several locations in the system. Clogging of the lines necessitated terminating runs typically after 2 to 4 hours of operation. Clogging problems were most severe in ...
Date: January 22, 1999
Creator: Cianciolo, Brian C.; Oehlberg, Richard J. & Nelson, Sidney G.
Partner: UNT Libraries Government Documents Department

Control of Trace Metal Emissions During Coal Combustion

Description: Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The project was started on July 1, 1994 and this is the thirteenth quarterly technical progress report. Specifically, the following progress has been made during this performance period from July 1, 1997 through September 30, 1997.
Date: October 1, 1997
Creator: Ho, Thomas C.
Partner: UNT Libraries Government Documents Department

Field demonstration project using clean coal technology by-products

Description: The disposal of flue gas desulfurization (FGD) by-products has become a major concern as issues of emission cleansing and landfill costs continue to rise. Laboratory tests conducted in the Department of Civil Engineering at The Ohio State University have shown that the dry FGD by-products possess certain engineering properties which have been proven desirable in a considerable number of construction uses. As a follow on to the laboratory program, a field investigation into possible engineering uses of dry FGD wastes was initiated. In the work presented in this paper, FGD by-products were used to reconstruct the failed portion of a highway embankment. The paper presents the procedures used in the process and examines the stability of the repaired highway embankment.
Date: March 1, 1995
Creator: Kim, Sung Hwan; Nodjomian, S. & Wolfe, W.
Partner: UNT Libraries Government Documents Department

Electric Power Research Institute: Environmental Control Technology Center

Description: Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month continued with the DOE/PRDA Phase I investigation of the Clear Liquor Scrubbing Process with Anhydrite Production. The DOE/PRDA Phase I testing of the B&W/Condensing Heat Exchanger (CH) was completed this month. This one-year tube wear analysis investigation was completed on 3/10/97, and a final inspection of the unit was made on 3/21/97. The CH unit and its related equipment are currently being removed from the ECTC test configuration, disassembled, and returned to B&W and CH Corp. for additional analyses. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the Carbon Injection System (the Pulse-jet Fabric Filter) remained idle this month in a cold-standby mode and were inspected regularly.
Date: March 1, 1997
Partner: UNT Libraries Government Documents Department

Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor

Description: Calcium oxide injected in a slagging combustor react with the sulfur from coal combustion to form sulfur bearing particles, which are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, it must be drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re- evolution. The objective of this 36 month project was to perform a series of 16 one day tests to determine the factors that control the retention of the sulfur in the slag. In the present quarterly reporting period, 3 days of combustor tests were performed, bringing the total number of tests performed to 19. Two of the test were a repeat of two tests performed in the previous quarter with a high, 37% ash, Indian coal. The high slag flow rate with that coal resulted in the highest observed sulfur retention to-date, namely 20% of the injected sulfur. In the present quarter, this test was repeated with the same coal feed rate but with 75% longer period of 2.4 hours. The total mineral matter injected was 635 lb/hr, compared to only 19.7 lb/hr of sulfur, of which 75% was from injected gypsum. However, despite excellent slag flow from the previous Indian coal tests, only 5.8% of the sulfur from the gypsum reported to the slag. Since substantial amounts slag remained on the combustor walls, it is concluded that still longer duration tests are required to establish equilibrium conditions. Current efforts are focused on finding a U.S. source of high ash coal to implement additional tests.
Date: August 13, 1997
Creator: Zauderer, B.
Partner: UNT Libraries Government Documents Department

Enhanced control of mercury emissions through modified speciation

Description: In anticipation of possible regulations regarding mercury emissions, research efforts sponsored by DOE, EPRI, and others are investigating the risks posed by mercury emissions, improved techniques for measuring those emissions, and possible control measures. The focus in the control research is on techniques that can be used in conjunction with existing flue-gas-cleanup (FGC) systems in order to minimize additional capital costs and operational complexity. Argonne National Laboratory has supported the DOE Fossil Energy Program for over 15 years with research on advanced environmental control technologies. The emphasis in Argonne`s work has been on integrated systems that combine control of several pollutants. Specific topics have included spray drying for sulfur dioxide and particulate-matter control with high-sulfur coal, combined sulfur dioxide and nitrogen oxides control technologies, and techniques to enhance mercury control in existing FGC systems. The latter area has focused on low-cost dry sorbents for use with fabric filters or electrostatic precipitators and techniques for improving the capture of mercury in wet flue-gas desulfurization (FGD) systems. This paper presents results from recent work that has studied the effects of several oxidizing agents in combination with typical flue-gas species (e.g., nitrogen oxides and sulfur dioxide) on the oxidation of Hg{sup 0}.
Date: July 1, 1997
Creator: Livengood, C.D. & Mendelsohn, M.H.
Partner: UNT Libraries Government Documents Department

MULTIPLE POLLUTANT REMOVAL USING THE CONDENSING HEAT EXCHANGER

Description: The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon ® covered condensing heat exchanger is adapted to remove certain flue gas constituents, both particulate and gaseous, while recovering low level heat. The pollutant removal performance and durability of this device is the subject of a USDOE sponsored program to develop this technology. The program was conducted under contract to the United States Department of Energy�s Fossil Energy Technology Center (DOE-FETC) and was supported by the Ohio Coal Development Office (OCDO) within the Ohio Department of Development, the Electric Power Research Institute�s Environmental Control Technology Center (EPRI-ECTC) and Babcock and Wilcox - a McDermott Company (B&W). This report covers the results of the first phase of this program. This Phase I project has been a two year effort. Phase I includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MW<sub>t</sub>. The other task studied the durability of the Teflon ® covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. Although soda ash was shown to be the most effective reagent for acid gas absorption, comparative cost analyses suggested that magnesium enhanced lime was the most promising avenue for future study. The ...
Date: June 1, 1998
Creator: JANKURA, B.J.; KUDLAC, G.A. & BAILEY, R.T.
Partner: UNT Libraries Government Documents Department

METHANE DE-NOX FOR UTILITY PC BOILERS

Description: The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NO{sub x} emissions to 0.15 lb/million Btu or less without post-combustion flue gas cleaning. Work during the quarter included completion of the equipment fabrication and installation efforts for the 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Final selection of the first two test coals and preliminary selection of the final two test coals were also completed.
Date: October 30, 2001
Creator: Rabovitser, Joseph; Bryan, Bruce; Nester, Serguei & Wohadlo, Stan
Partner: UNT Libraries Government Documents Department

Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler; a DOE Assessment

Description: The results from the GR-LNB technology demonstrated by EER at Cherokee Station approached, but did not meet, the CCT project's performance objectives. Acceptable unit operability was achieved with both the GR and the LNB components. The gas reburning component of the process appears to be broadly applicable for retrofit NO{sub x} control to most utility boilers and, in particular, to wet-bottom cyclone boilers, which are high NO{sub x} emitters and are difficult to control (LNB technology is not applicable to cyclone boilers). GR-LNB can reduce NO{sub x} to mandated emissions levels under Title IV of the CAAA without significant, adverse boiler impacts. The GR-LNB process may be applicable to boilers significantly larger than the demonstration unit, provided there is adequate dispersion and mixing of injected natural gas. Major results of the demonstration project are summarized as follows: NO{sub x}-emissions reductions averaging 64% were achieved with 12.5% gas heat input in long-term tests on a 158-MWe (net) wall-fired unit. The target reduction level of 70% was achieved only on a short-term basis with higher gas consumption. The thermal performance of coal-fired boilers is not significantly affected by GR-LNB. Convective section steam temperatures can be controlled within acceptable limits. Thermal efficiency is decreased by a small amount (about 0.8%), because of increased dry gas loss and higher moisture in the flue gas as a result of the GR process. Furnace slagging and convective section fouling can be adequately controlled. Because of the higher hydrogen/carbon (H/C) ratio of natural gas compared with coal, use of the GR process results in a modest reduction in CO{sub 2} emissions. SO{sub 2} and particulate emissions are reduced in direct proportion to the fraction of heat supplied by natural gas.
Date: February 28, 2001
Creator: National Energy Technology Laboratory (U.S.)
Partner: UNT Libraries Government Documents Department