1,957 Matching Results

Search Results

Advanced search parameters have been applied.

General Engineering and Consulting Laboratory "Hot Service" Turbine Pump: Progress Report [for] Period May 1 to June 15, 1948

Description: Introduction: "This report covers progress on the testing of the General Engineering and Consulting Laboratories Turbine Pump No. 1 from May 1, 1948 to Jun 15, 1948. All testing prior to April 30, 1948 has been described in Redox Experiment Testing Report No. 1 (Document HW-9474) and No. 2 (Document HW-9694)."
Date: June 21, 1948
Creator: Stringer, J. T. & Allen, A. W.
Partner: UNT Libraries Government Documents Department

Zirconium Pilot Plant Research and Development Progress Report

Description: The following report studies the effect of flow rates and deposition pressure on the zirconium deposition in the zirconium pilot plant with the use of a Hilco oil purifier for the vacuum pumps that permitted studies to continue through the month.
Date: November 20, 1951
Creator: Dryden, C. E.; Accountius, O. E.; Black, D. G.; Finney, B. C.; Gruber, B. A.; Jurevic, W. G. et al.
Partner: UNT Libraries Government Documents Department

Measuring rates of outdoor airflow into HVAC systems

Description: During the last few years, new technologies have been introduced for measuring the flow rates of outside air into HVAC systems. This document describes one particular technology for measuring these airflows, a system and a related protocol developed to evaluate this and similar measurement technologies under conditions without wind, and the results of our evaluations. We conclude that the measurement technology evaluated can provide a reasonably accurate measurement of OA flow rate over a broad range of flow, without significantly increasing airflow resistance.
Date: October 1, 2002
Creator: Fisk, William J.; Faulkner, David; Sullivan, Douglas P. & Delp, Woody
Partner: UNT Libraries Government Documents Department

Quarterly Technical Progress Report

Description: Methane oxidative coupling experiments were conducted in a porous gamma alumina membrane reactor using Mn-W-Na/SiOz catalyst, and its performance was compared with a packed reactor. By varying the helium flow rate and keeping the temperature, methane flow rate, and oxygen flow rate constant, the membrane reactor gave 10% higher Cz yield and 30% higher C2 selectivity than the co-feed reactor operated at the same methane conversion. At similar C2 yield and C2 selectivity, the methane conversion of the membrane reactor was 15% lower than that of a co-feed reactor. By varying the oxygen flow rate and keeping the temperature, methane flow rate, and helium flow rate constant, at the same methane conversion, the membrane reactor gave about 3% higher C2 yield and C2 selectivity than the co-feed reactor. Higher helium flow rate gave higher C2 selectivity and yield, whereas changing methane flow rate did not significantly affect the reactor performance.
Date: August 29, 1997
Creator: Ma, Yi Hua
Partner: UNT Libraries Government Documents Department

Laboratory experiments on dispersive transport across interfaces: The role of flow direction

Description: We present experimental evidence of asymmetrical dispersive transport of a conservative tracer across interfaces between different porous materials. Breakthrough curves are measured for tracer pulses that migrate in a steady state flow field through a column that contains adjacent segments of coarse and fine porous media. The breakthrough curves show significant differences in behavior, with tracers migrating from fine medium to coarse medium arriving significantly faster than those from coarse medium to fine medium. As the flow rate increases, the differences between the breakthrough curves diminish. We argue that this behavior indicates the occurrence of significant, time-dependent tracer accumulation in the resident concentration profile across the heterogeneity interface. Conventional modeling using the advection-dispersion equation is demonstrated to be unable to capture this asymmetric behavior. However, tracer accumulation at the interface has been observed in particle-tracking simulations, which may be related to the asymmetry in the observed breakthrough curves.
Date: April 1, 2009
Creator: Berkowitz, B.; Cortis, A.; Dror, I. & Scher, H.
Partner: UNT Libraries Government Documents Department

Liquid metal Flow Meter - Final Report

Description: Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.
Date: January 30, 2007
Creator: Andersen C, Hoogendoom S, Hudson B, Prince J, Teichert K, Wood J, Chase K
Partner: UNT Libraries Government Documents Department

Water-Level Monitoring Plan for the Hanford Groundwater Monitoring Project

Description: This document presents the water-level monitoring plan for the Hanford Groundwater Monitoring Project, conducted by the Pacific Northwest National Laboratory (PNNL). Water-level monitoring of the groundwater system beneath the Hanford Site is performed to fulfill the requirements of various state and federal regulations, orders, and agreements. The primary objective of this monitoring is to determine groundwater flow rates and directions. To meet this and other objectives, water-levels are measured annually in monitoring wells completed within the unconfined aquifer system, the upper basalt-confined aquifer system, and in the lower basalt-confined aquifers for surveillance monitoring. At regulated waste units, water levels are taken monthly, quarterly, semi-annually, or annually, depending on the hydrogeologic conditions and regulatory status of a given site. The techniques used to collect water-level data are described in this document, along with the factors that affect the quality of the data and the strategies employed by the project to minimize error in the measurement and interpretation of water levels.
Date: September 7, 1999
Creator: McDonald, John P.; Chamness, Michele A. & Newcomer, Darrell R.
Partner: UNT Libraries Government Documents Department

Ultra-High Pressure Modeling and Experiments Review

Description: The RDHWT/MARIAH II energy addition, run time, and mass flow rate requirement simply large air and nitrogen fluid volumes at the highest practicable static enthalpy. The objective of the gas supply concept development is the satisfaction of ultra-high pressure (UHP), high temperature thermodynamic requirements in a facility with acceptable safety and economic risks. The primary challenges for the mechanical design are connecting multiple volumes at pressures greater than 1,400MPa and temperatures greater than 500 K; fabricating high strength steel sections approximately 2 m in typical dimension, and reacting the pressure-related forces in the system. In the 'octahedral module' concept, four UHP intensifiers and two UHP manifolds are arranged in an 'octahedral' geometry that results in acceptable deviatoric stresses at cross bores. Multiple modules join to provide the required UHP volume at a stagnation pressure of 2100MPa and stagnation temperature of 750 K.
Date: June 1, 2004
Creator: Costantino, M & Darnell, I
Partner: UNT Libraries Government Documents Department

NO{sub x} emissions of a jet diffusion flame which is surrounded by a shroud of combustion air

Description: The present work reports an experimental study on the behavior of a jet flame surrounded by a shroud of combustion air. Measurements focussed on the flame length and the emissions of NO{sub x}, total unburned hydrocarbons, CO{sub 2}, and O{sub 2}. Four different fuel flow rates (40.0, 78.33, 138.33, and 166.6 cm/s), air flow rates up to 2500 cm{sup 3}/s and four different air injector diameters (0.079 cm, 0. 158 cm, 0.237 cm, and 0.316 cm) were used. The shroud of combustion air causes the flame length to decrease by a factor proportional to 1/[p{sub a}/p{sub f} + C{sub 2}({mu}{sub a}Re,a/{mu}{sub f}Re,f){sup 2}]{sup {1/2}}. A substantial shortening of the flame length occurred by increasing the air injection velocity keeping fuel rate fixed or conversely by lowering the fuel flow rate keeping air flow rate constant. NO{sub x} emissions ranging from 5 ppm to 64 ppm were observed and the emission of NO{sub x} decreased strongly with the increased air velocity. The decrease of NO{sub x} emissions was found to follow a similar scaling law as does the flame length. However, the emission of the total hydrocarbons increased with the increased air velocity or the decreased fuel flow rate. A crossover condition where both NO{sub x} and unburned- hydrocarbon emissions are low, was identified. At an air-to-fuel velocity ratio of about 1, the emissions of NO{sub x} and the total hydrocarbons were found to be under 20 ppm.
Date: August 1, 1996
Creator: Tran, P.X.; White, F.P.; Mathur, M.P. & Ekmann, J.M.
Partner: UNT Libraries Government Documents Department

Experience with small turbomachinery in a 400 watt refrigerator

Description: A refrigerator similar to one of the Fermilab Tevatron satellites was reconfigured to use turbomachinery instead of the reciprocating equipment typical of the installations. A Sulzer dry turboexpander, Creare wet turboexpander, and IHI centrifugal cold compressor have been installed and operated for about 8000 hours. Experience was gained both with the rotating machinery and with the refrigerator itself as it interfaced with the load. Equipment was set up to regulate in the same manner as the reciprocating devices had. Heat load and operating mode were adjusted and evaluations made regarding the behavior of the devices. Individual equipment performance is described as well as system behavior and overall integration of the machinery. In particular, attention is paid to the Creare wet turboexpander. This device is operated for the first time as part of a full scale refrigeration system, testing not only its performance at the design point but also its off design characteristics and behavior in transient situations.
Date: September 1, 1996
Creator: Fuerst, J.D.
Partner: UNT Libraries Government Documents Department

Development and Operation of a Passive-Flow Treatment System for (Sup 90)Sr-Contaminated Groundwater

Description: Seep C was a free-flowing stream of groundwater that emerged in a narrow valley below the old low-level waste (LLW) disposal trenches in Solid Waste Storage Area 5 (SWSA 5) at Oak Ridge National Laboratory (ORNL). The flow rate of the seep water was strongly influenced by rainfall, and typically ranged from 0.5 to 8 L/min. The seep water entered Melton Branch, a small stream that joins White Oak Creek before exiting the ORNL boundary. The seep water contained high concentrations of {sup 90}Sr (10,000 to 20,000 Bq/L) and, before the full-scale treatment system was installed, contributed about 25% of all the {sup 90}Sr leaving ORNL. Seep C was identified as a primary source of off-site contaminant transport and was designated for an early removal action under the Comprehensive Environmental Response and Liability Act (CERCLA). A passive flow treatment system was chosen as the most cost-effective method for treating the water.
Date: February 28, 1999
Creator: Kirkham, P.S. & Taylor, P.A.
Partner: UNT Libraries Government Documents Department

Engineering study and conceptual design report for primary ventilation duct flow monitoring

Description: The objective of this engineering study is to develop the preferred method and concepts for measurement of the primary exhaust ventilation flow rates in Double Shell Tanks (DSTs) on the hydrogen watch list. This includes tanks 101-AW, 103, 104, and 105-AN, and 103-SY. A systems engineering approach is utilized to weight the desired characteristics of the flow monitoring system, and then select the best alternative
Date: October 31, 1995
Creator: Hertelendy, N.A.
Partner: UNT Libraries Government Documents Department

Determination of the Hall Thruster Operating Regimes

Description: A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible -- with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile.
Date: April 9, 2002
Creator: Dorf, L.; Semenov, V.; Raitses, Y. & Fisch, N.J.
Partner: UNT Libraries Government Documents Department

Transcriptional Profiling Using the Flowthrough Genosensor

Description: A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corporation (Contractor) and Gene Logic, Inc., (Participant) was carried out to evaluate the technical feasibility study of the application of the flowthrough genosensor for gene expression (transcriptional) profiling, over the current industry practice of using flat surface hybridization arrays to monitor the relative abundance of individual mRNA species in a cell. Various parameters, including substrate preparation, flow rates, hybridization conditions and sample concentrations, were evaluated on the flowthrough genosensor. The superiority of the flowthrough genosensor, in terms of hybridization rate and sensitivity were established.
Date: September 27, 1999
Creator: Doktycz, M.J.
Partner: UNT Libraries Government Documents Department

Short Term Climatological Wind Data as a Tool for Wind Forecasting

Description: Utilizing short-term climatological wind data can enhance wind speed and wind direction forecasts. An analysis of regional or tower-based wind rose summaries can be useful forecast guides especially when synoptic-scale pressure gradients are weak. Predictive data from multiple models can be plotted against short-term climatological wind data to assess deviations from expected norms and differences between forecast models. Site-specific comparisons between predicted data and observed climatological distributions can provide further insights to the forecaster. These methods can be applied to any location where sufficient climatological data (at least two years) is available.
Date: January 28, 2004
Creator: Parker, MJ
Partner: UNT Libraries Government Documents Department


Description: Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. But while the volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade, it is not yet possible to make use of all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. The goal of this project is to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem is necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management. Facies (defined here as regions of relatively uniform petrophysical properties) are common features of all reservoirs. Because the flow properties of the various facies can vary greatly, knowledge of the location of facies boundaries is of utmost importance for the prediction of reservoir performance and for the optimization of reservoir management. When the boundaries between facies are fairly well known, but flow properties are poorly known, the average properties for all facies can be determined using traditional techniques. Traditional history matching honors dynamic data by adjusting petrophysical properties in large areas, but in the process of adjusting the reservoir model ignores the static data and often results in implausible reservoir models. In general, ...
Date: January 1, 2003
Creator: Reynolds, Albert C.; Oliver, Dean S.; Zhang, Fengjun; Dong, Yannong; Skjervheim, Jan Arild & Liu, Ning
Partner: UNT Libraries Government Documents Department

Dehumidification: Prediction of Condensate Flow Rate for Plate-Fin Tube Heat Exchangers Using the Latent j Factor

Description: Condensate flow rate is an important factor in designing dehumidifiers or evaporators. In this paper, the latentj fimtor is used to analyze the dehumidification performance of two plate-fin tube heat exchangers. This latent j factor, analogous to the total j factor, is a flmction of the mass transfa coefllcient, the volumetric air flow rate, and the Schmidt number. This latent j factor did predict condensate flow rate more directly and accurately than any other sensiblej factor method. The Iatentj factor has been used in the present study because the sensible j factor correlations presented in the literature failed to predict the condensate flow rate at high Reynolds numbers. Results show that the latent j i%ctor em be simply correlated as a fhnction of the Reynolds number based on the tube outside diameter and number of rows of the heat exchanger.
Date: March 15, 1999
Creator: Baxter, V.D.; Chen, D.T. & Conklin, J.C.
Partner: UNT Libraries Government Documents Department

Confined combustion of TNT explosion products in air

Description: Effects of turbulent combustion induced by explosion of a 0.8 kg cylindrical charge of TNT in a 17 m<sup>3</sup> chamber filled with air, are investigated. The detonation wave in the charge transforms the solid explosive (C<sub>7</sub>H<sub>5</sub>N<sub>3</sub>O<sub>6</sub>) to gaseous products, rich (~20% each) in carbon dust and carbon monoxide. The detonation pressure (~210 kb) thereby engendered causes the products to expand rapidly, driving a blast wave into the surrounding air. The interface between the products and air, being essentially unstable as a consequence of strong acceleration to which it is subjected within the blast wave, evolves into a turbulent mixing layer-a process enhanced by shock reflections from the walls. Under such circumstances rapid combustion takes place where the expanded detonation products play the role of fuel. Its dynamic effect is manifested by the experimental measurement of ~3 bar pressure increase in the chamber, in contrast to ~1bar attained by a corresponding TNT explosion in nitrogen. The experiments were modeled as a turbulent combustion in an unmixed system at infinite Reynolds, Peclet and DamkGhler numbers. The CFD solution was obtained by a high-order Godunov scheme using an AMR (Adaptive Mesh Refinement) to trace the turbulent mixing on the computational grid in as much detail as possible. The evolution of the mass fraction of fuel consumed by combustion thus determined exhibited the properties of an exponential decay following a sharp initiation. The results reveal all the dynamic features of the exothermic process of combustion controlled by fluid mechanic transport in a highly turbulent field, in contrast to those elucidated by the conventional reaction-diffusion model.
Date: August 31, 1998
Creator: Chandler, J; Ferguson, R E; Forbes, J; Kuhl, A L; Oppenheim, A K & Spektor, R
Partner: UNT Libraries Government Documents Department