104 Matching Results

Search Results

Advanced search parameters have been applied.

Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source reactor at Oak Ridge National Laboratory

Description: This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at ORNL. Damage propagation is postulated to occur from thermal conduction between dmaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur beause of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A parametric study was done for several uncertain variables. The study included investigating effects of plate contact area, convective heat transfer coefficient, thermal conductivity on fuel swelling, and initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects of damage propagation. Results provide useful insights into how variouss uncertain parameters affect damage propagation.
Date: December 31, 1995
Creator: Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S. & Georgevich, V.
Partner: UNT Libraries Government Documents Department

Study on severe accident fuel dispersion behavior in the Advanced Neutron Source reactor at Oak Ridge National Laboratory

Description: Core flow blockage events are a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel could result in core heatup and melting under full coolant flow condition. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Heat transfer between melt particle and coolant, which affects particle breakup, was studied. The study indicates that the thermal effect on melt fragmentation seems to be negligible because the time corresponding to the breakup due to hydrodynamic forces is much shorter than the time for the melt surface to solidify. The study included modeling and analyses to predict transient behavior and transport of debris particles throughout the coolant system. The transient model accounts for the surface forces acting on the particle that results from the pressure variation on the surface, inertia, virtual mass, viscous force due to relative motion of particle in the coolant, gravitation, and resistance due to inhomogenous coolant velocity radially across piping due to possible turbulent coolant motions. Results indicate that debris particles would reside longest in heat exchangers because of lower coolant velocity there. Also core debris tends to move together upon melting and entrainment.
Date: December 31, 1995
Creator: Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V. & Xiang, J.Y.
Partner: UNT Libraries Government Documents Department

Detection of blockages in process piping Los Alamos National Laboratory. Final report

Description: The attached reports and proposal summarize the work to date for the revised Ultrasonic Resonance Interferometry system. The most recent set of experiments, to determine the accuracy of the implementation of a new calibration curve to account for the variation of the wave speed with temperature, were never completed due to lack of funding. The general focus of the ongoing work, outlined in the weekly reports, had been improvements in accuracy of the measurement system using software modifications. The future focus of the project, as outlined in the attached proposal, was to incorporate a thermal conductivity probe with the ultrasonic measurement system to allow measurement of fluids which have a bimodal wavespeed vs. molarity relation.
Date: October 1, 1994
Creator: Histand, M.B.
Partner: UNT Libraries Government Documents Department

PIV velocity measurements in the wake of an obstruction simulating a Taylor bubble in a duct

Description: Mean velocity measurements in the wake of an obstruction simulating a Taylor bubble (or slug) have been obtained using Particle Image Velocimetry (PIV) in a duct. Two flow rates were established: one represented the flow behind a large gas slug rising in quiescent fluid and the other represented an idealized slug rising with a higher relative velocity, as typically found in higher void fraction churn-turbulent flow. The results indicate that, in a reference frame fixed to the slug, the flow around the sides of the slug behaves like wall bounded jets which eventually merge downstream of the slug. The ratio of wake volume to slug volume is nearly the same for both Reynolds numbers tested (i.e., 3.0 at Re = 3,628 and 2.9 at Re = 7.257) although the measurements suggest that the wake size decreases somewhat as the Reynolds number is increased.
Date: June 1, 1997
Creator: Vassallo, P. & Kumar, R.
Partner: UNT Libraries Government Documents Department

Sediment erosion and transport at the Rio Grande mouth : report for the National Border Technology Program and International Boundary and Water Commission.

Description: The mouth of the Rio Grande has become silted up, obstructing its flow into the Gulf of Mexico. This is problematic in that it has created extensive flooding. The purpose of this study was to determine the erosion and transport potential of the sediments obstructing the flow of the Rio Grande by employing a unique Mobile High Shear Stress flume developed by Sandia's Carlsbad Programs Group for the US Army Corps of Engineers. The flume measures in-situ sediment erosion properties at shear stresses ranging from normal flow to flood conditions for a variable depth sediment core. The flume is in a self-contained trailer that can be placed on site in the field. Erosion rates and sediment grain size distributions were determined from sediment samples collected in and around the obstruction and were subsequently used to characterize the erosion potential of the sediments under investigation.
Date: November 1, 2003
Creator: Chapin, D. Michael, Jr.; Langford, Richard (University of Texas at El Paso, El Paso, TX); Neu, Roene (University of Texas at El Paso, El Paso, TX); Buhalts, Randy A.; Jepsen, Richard Alan & Roberts, Jesse Daniel
Partner: UNT Libraries Government Documents Department

Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing operations. Annual report, January 1--December 31, 1992

Description: Natural gas hydrates are solid crystalline compounds which form when molecules smaller than n-butane contact molecules of water at elevated pressures and reduced temperatures, both above and below the ice point. Because these crystalline compounds plug flow channels, they are undesirable. In this project the authors proposed an alternate approach of controlling hydrate formation by preventing hydrate growth into a sizeable mass which could block a flow channel. The authors call this new technique kinetic inhibition, because while it allows the system to exist in the hydrate domain, it prevents the kinetic agglomeration of small hydrate crystals to the point of pluggage of a flow channel. In order to investigate the kinetic means of inhibiting hydrate formation, they held two consortium meetings, on June 1, 1990 and on August 31, 1990. At subsequent meetings, the authors determined the following four stages of the project, necessary to reach the goal of determining a new hydrate field inhibitor: (1) a rapid screening method was to be determined for testing the hydrate kinetic formation period of many surfactants and polymer candidates (both individually and combined), the present report presents the success of two screening apparatuses: a multi-reactor apparatus which is capable of rapid, high volume screening, and the backup screening method--a viscometer for testing with gas at high pressure; (2) the construction of two high, constant pressure cells were to experimentally confirm the success of the chemicals in the rapid screening apparatus; (3) in the third phase of the work, Exxon volunteered to evaluate the performance of the best chemicals from the previous two stages in their 4 inch I.D. Multiphase flow loop in Houston; (4) in the final phase of the work, the intention was to take the successful kinetic inhibition chemicals from the previous three stages and then test them in ...
Date: December 31, 1992
Partner: UNT Libraries Government Documents Department

Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing. Annual report, January 1--December 31, 1994

Description: Natural gas hydrates are crystalline materials formed of natural gas and water at elevated pressures and reduced temperatures. Because natural gas hydrates can plug drill strings, pipelines, and process equipment, there is much effort expended to prevent their formation. The goal of this project was to provide industry with more economical hydrate inhibitors. The specific goals for the past year were to: define a rational approach for inhibitor design, using the most probable molecular mechanism; improve the performance of inhibitors; test inhibitors on Colorado School of Mines apparatuses and the Exxon flow loop; and promote sharing field and flow loop results. This report presents the results of the progress on these four goals.
Date: December 31, 1994
Partner: UNT Libraries Government Documents Department

Experience with copper oxide production in antiproton source components at Fermi National Accelerator Laboratory

Description: The Antiproton (Pbar) Source at Fermi National Accelerator Laboratory is a facility comprised of a target station, two rings called the Debuncher and Accumulator and the transport lines between those rings and the remainder of the particle accelerator complex. Water is by far the most common medium for carrying excess heat away from components, primarily electromagnets, in this facility. The largest of the water systems found in Pbar is the 95 degree Fahrenheit Low Conductivity Water (LCW) system. LCW is water which has had free ions removed, increasing its resistance to electrical current. This water circuit is used to cool magnets, power supplies, and stochastic cooling components and typically has a resistivity of 11--18 megaohms-cm. For more than ten years the Antiproton rings were plagued with overheating magnets due to plugged water-cooling channels. Various repairs have been tried over the years with no permanent success. Throughout all of this time, water samples have indicated copper oxide, CuO, as the source of the contamination. Matters came to a head in early 1997 following a major underground LCW leak between the Central Utilities Building and the Antiproton Rings enclosures. Over a span of several weeks following system turn-on, some twenty magnets overheated leading to unreliable Pbar source operation. Although it was known that oxygen in the system reacts with the copper tubing to form CuO, work to remedy this problem was not undertaken until this time period. Leaks, large quantities of make-up water, infrequent filter replacement, and thermal cycling also result in an increase in the corrosion product release rate. A three-pronged approach has been implemented to minimize the amount of copper oxide available to plug the magnets: (1) installation of an oxygen removal system capable of achieving dissolved oxygen concentrations in the parts per billion (ppb) range; (2) regular closed-loop filter/flushing ...
Date: May 10, 2000
Creator: Ader, Christine R.; Jr., Elvin R. Harms & Morgan, and James P.
Partner: UNT Libraries Government Documents Department

High volume-high value usage of flue gas desulfurization (FGD) by-products in underground mines: Phase 2 -- Field investigations. Quarterly report, July 1--September 30, 1997

Description: During this quarter, the majority of activity focused on grout emplacement at the Lodestar Energy Inc. (formerly Costain Coal Co.) surface mine auger holes described in the previous report. Specifically, two different types of grout pumps were investigated: a piston pump used in previous demonstrations, and a progressive cavity pump. The latter is currently utilized for grouting in underground coal mines, is relatively small and portable, and is capable of receiving dry material (e.g., fly ash) and water, mixing it to produce a grout, and pumping the grout at high pressure. It is therefore worthwhile to investigate it`s potential use in auger mine filling. Several field demonstrations were conducted using the different pumps. Numerous problems were encountered when using the progressive cavity pump, all of which were related to its inability to handle the highly reactive and heterogeneous FBC fly ash. Even relatively small ash agglomerates (<1 in. in diameter), which were not a problem for the larger piston pump, caused blockages in the progressive cavity pump which not only proved extremely difficult to clear, but also resulted in significant mechanical failures. Furthermore, mixing of dry fly ash with water within the progressive cavity pump was inconsistent and difficult to control. Consequently, the pump was unable to completely fill even a single auger hole. It was found that a large proportion of bed ash in the grout generated a large amount of heat and caused early stiffening of the material. During the experiments, cylinders of grout were prepared for compressive strength testing, and moisture contents were determined on-site. A thermocouple assembly was also constructed to record grout temperatures within an auger hole.
Date: December 31, 1997
Partner: UNT Libraries Government Documents Department

Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing. Annual report, January 1--December 31, 1993

Description: Natural gas hydrates are crystalline materials formed of natural gas and water at elevated pressures and reduced temperatures. Because natural gas hydrates can plug drill strings, pipelines, and process equipment, there is much effort expended to prevent their formation. The goal of this project was to provide industry with more economical hydrate inhibitors. The specific goals for the past year were to: continue both screening and high pressure experiments to determine optimum inhibitors; investigate molecular mechanisms of hydrate formation/inhibition, through microscopic and macroscopic experiments; begin controlled tests on the Exxon pilot plant loop at their Houston facility; and continue to act as a forum for the sharing of field test results. Progress on these objectives are described in this report.
Date: December 31, 1993
Partner: UNT Libraries Government Documents Department

Reactor scram events in the updated PIUS 600 advanced reactor design

Description: The PIUS advanced reactor is a 640-MWe pressurized water reactor concept developed by Asea Brown Boveri. A unique feature of PIUS is the absence of mechanical control and shutdown rods. Reactivity is controlled by coolant boron concentration and the temperature of the moderator coolant. Los Alamos supported the US Nuclear Regulatory Commission`s preapplication review of the PIUS reactor. Baseline calculations of the PIUS design were performed for active and passive reactor scrams using TRAC-PF1/MOD2. Additional sensitivity studies examined flow blockage and boron dilution events to explore the robustness of the PIUS concept for low-probability combination events following active-system scrams.
Date: December 31, 1994
Creator: Boyack, B.E.; Steiner, J.L.; Harmony, S.C.; Stumpf, H.J. & Lime, J.F.
Partner: UNT Libraries Government Documents Department

Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines

Description: The WTP pipe plugging issue, as stated by the External Flowsheet Review Team (EFRT) Executive Summary, is as follows: “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” A strategy was employed to perform critical-velocity tests on several physical simulants. Critical velocity is defined as the point where a stationary bed of particles deposits on the bottom of a straight horizontal pipe during slurry transport operations. Results from the critical velocity testing provide an indication of slurry stability as a function of fluid rheological properties and transport conditions. The experimental results are compared to the WTP design guide on slurry transport velocity in an effort to confirm minimum waste velocity and flushing velocity requirements as established by calculations and critical line velocity correlations in the design guide. The major findings of this testing is discussed below. Experimental results indicate that the use of the Oroskar and Turian (1980) correlation in the design guide is conservative—Slurry viscosity has a greater affect on particles with a large surface area to mass ratio. The increased viscous forces on these particles result in a decrease in predicted critical velocities from this traditional industry derived equations that focus on particles large than 100 m in size. Since the Hanford slurry particles generally have large surface area to mass ratios, the reliance on such equations in the Hall (2006) design guide is conservative. Additionally, the use of the 95% percentile particle size as an input to this equation is conservative. However, test results indicate that the use of an average particle density as an input to the equation is not conservative. Particle density has a large influence on the overall result returned ...
Date: March 25, 2009
Creator: Poloski, Adam P.; Adkins, Harold E.; Abrefah, John; Casella, Andrew M.; Hohimer, Ryan E.; Nigl, Franz et al.
Partner: UNT Libraries Government Documents Department


Description: On March 18, 2009 a Defense Waste Processing Facility (DWPF) GC Line Filter Assembly was received at the Savannah River National Laboratory (SRNL). This filter assembly was removed from operation following the completion of Sludge Batch 4 processing in the DWPF. Work on this sample was requested in a Technical Assistance Request. This document reports the pictures, observations, samples collected, and analytical results for the assembly. The assembly arrived at SRNL separated into its three component filters: high efficiency particulate air (HEPA)-1, HEPA-2, and a high efficiency mist evaporator (HEME). Each stage of the assembly's media was sampled and examined visually and by scanning electron microscopy (SEM). Solids built up in the filter housing following the first stage HEME, were dissolved in dilute nitric acid and analyzed by ICP-AES and the undissolved white solids were analyzed by x-ray diffraction (XRD). The vast majority of the material in each of the three stages of the DWPF GC Line Filter Assembly appears to be contaminated with a Hg compound that is {approx}59 wt% Hg on a total solids basis. The Hg species was identified by XRD analysis to contain a mixture of Hg{sub 4}(OH)(NO{sub 3}){sub 3} and Hg{sub 10}(OH){sub 4}(NO{sub 3}){sub 6}. Only in the core sample of the second stage HEPA, did this material appear to be completely covering portions of the filter media, possibly explaining the pressure drops observed by DWPF. The fact that the material migrates through the HEME filter and both HEPA filters, and that it was seen collecting on the outlet side of the HEME filter, would seem to indicate that these filters are not efficient at removing this material. Further SRAT off-gas system modeling should help determine the extent of Hg breakthrough past the Mercury Water Wash Tank (MWWT). The SRAT off-gas system has not been ...
Date: November 11, 2009
Creator: Bannochie, C. & Imrich, K.
Partner: UNT Libraries Government Documents Department


Description: The Defense Waste Processing Facility (DWPF) will complete Sludge Batch 5 (SB5) processing in fiscal year 2010. DWPF has experienced multiple feed stoppages for the SB5 Melter Feed Tank (MFT) due to clogs. Melter throughput is decreased not only due to the feed stoppage, but also because dilution of the feed by addition of prime water (about 60 gallons), which is required to restart the MFT pump. SB5 conditions are different from previous batches in one respect: pH of the Slurry Mix Evaporator (SME) product (9 for SB5 vs. 7 for SB4). Since a higher pH could cause gel formation, due in part to greater leaching from the glass frit into the supernate, SRNL studies were undertaken to check this hypothesis. The clogging issue is addressed by this simulant work, requested via a technical task request from DWPF. The experiments were conducted at Aiken County Technology Laboratory (ACTL) wherein a non-radioactive simulant consisting of SB5 Sludge Receipt and Adjustment Tank (SRAT) product simulant and frit was subjected to a 30 hour SME cycle at two different pH levels, 7.5 and 10; the boiling was completed over a period of six days. Rheology and supernate elemental composition measurements were conducted. The caustic run exhibited foaming once, after 30 minutes of boiling. It was expected that caustic boiling would exhibit a greater leaching rate, which could cause formation of sodium aluminosilicate and would allow gel formation to increase the thickness of the simulant. Xray Diffraction (XRD) measurements of the simulant did not detect crystalline sodium aluminosilicate, a possible gel formation species. Instead, it was observed that caustic conditions, but not necessarily boiling time, induced greater thickness, but lowered the leach rate. Leaching consists of the formation of metal hydroxides from the oxides, formation of boric acid from the boron oxide, and dissolution ...
Date: February 8, 2010
Creator: Fernandez, A.
Partner: UNT Libraries Government Documents Department

Studies with Ferrous Sulfamate and Alternate Reductants for 2nd Uranium Cycle

Description: A wide range of miniature mixer-settler tests were conducted to determine the source of iron and sulfur contamination in the uranium product stream (''1EU'') of H Canyon's 2nd Uranium Cycle. The problem was reproduced on the laboratory scale mixer-settlers by changing the feed location of ferrous sulfamate from stage D4 to stage D1. Other process variables effected no change. It was later determined that ferrous sulfamate (FS) solids had plugged the FS line to stage D4, causing FS to backup a ventline and enter the Canyon process at stage D1. Pluggage was almost certainly due to precipitation of FS solids during extended process downtime. During the search for the root cause, tests showed that FS solids were quite small (1-10 mm), and a portion of them could bypass the current Canyon prefilter (3-mm). Also, additional tests were done to find an alternate means of reducing and thereby removing plutonium and neptunium from the uranium product. These tests showed that FS was a more effective reductant than either ascorbic acid or a hydroxylamine nitrate (HAN) / dilute FS combination.
Date: January 15, 2003
Creator: Crowder, M.L.
Partner: UNT Libraries Government Documents Department

Advanced neutron source reactor probabilistic flow blockage assessment

Description: The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool.
Date: August 1, 1995
Creator: Ramsey, C.T.
Partner: UNT Libraries Government Documents Department

Experiments to investigate direct containment heating phenomena with scaled models of the Calvert Cliffs Nuclear Power Plant

Description: The Surtsey Test Facility is used to perform scaled experiments simulating High Pressure Melt Ejection accidents in a nuclear power plant (NPP). The experiments investigate the effects of direct containment heating (DCH) on the containment load. The results from Zion and Surry experiments can be extrapolated to other Westinghouse plants, but predicted containment loads cannot be generalized to all Combustion Engineering (CE) plants. Five CE plants have melt dispersal flow paths which circumvent the main mitigation of containment compartmentalization in most Westinghouse PWRs. Calvert Cliff-like plant geometries and the impact of codispersed water were addressed as part of the DCH issue resolution. Integral effects tests were performed with a scale model of the Calvert Cliffs NPP inside the Surtsey test vessel. The experiments investigated the effects of codispersal of water, steam, and molten core stimulant materials on DCH loads under prototypic accident conditions and plant configurations. The results indicated that large amounts of coejected water reduced the DCH load by a small amount. Large amounts of debris were dispersed from the cavity to the upper dome (via the annular gap). 22 refs., 84 figs., 30 tabs.
Date: February 1997
Creator: Blanchat, T. K.; Pilch, M. M. & Allen, M. D.
Partner: UNT Libraries Government Documents Department

Summary of events and geotechnical factors leading to decommissioning of the Strategic Petroleum Reserve (SPR) facility at Weeks Island, Louisiana

Description: A sinkhole discovered over the edge of the Strategic Petroleum Reserve storage facility at Weeks Island salt dome, Louisiana, led to decommissioning the site during 1995--1998, following extensive diagnostics in 1994. The sinkhole resulted from mine-induced fractures in the salt which took may years to develop, eventually causing fresh water to leak into the storage chamber and dissolve the overlying salt, thus causing overburden collapse into the void. Prior to initiating the oil removal, a freeze wall was constructed at depth around the sinkhole in 1995 to prevent water inflow; a freeze plug will remain in place until the mine is backfilled with brine in 1997--8, and stability is reached. Residual oil will be removed; environmental monitoring has been initiated and will continue until the facility is completely plugged and abandoned, and environmental surety is achieved.
Date: October 1, 1996
Creator: Neal, J.T.; Bauer, S.J. & Ehgartner, B.L.
Partner: UNT Libraries Government Documents Department


Description: FIU-HCET personnel visited the Special Technologies Laboratory (STL) for discussions with the Principal Investigator (PI) of Laser Induced Fluorescence Imaging (LIFI) and for training in LIFI. Mr. Peter Gibbons, Tanks Retrieval Technology Integration Manager, visited FIU-HCET on July 20, 1999. Mr. Gibbons inspected the pipeline unplugging experimental facility at the HCET testing field. The detailed test bed construction, testing plan, and plugging material specifications were discussed.
Date: July 31, 1999
Creator: Ebadian, M.A.
Partner: UNT Libraries Government Documents Department

Waste Preparation and Transport Chemistry: Results of the FY 2000 Studies

Description: Problems with pipeline plugs at Hanford have occurred throughout its tank farm system. Most cross-site transfer lines at Hanford are no longer functional due to these plugs. Waste transfers frequently led to partial line plugs, resulting in substantial amounts of water being added to the tank system in an attempt to free the lines. In response to these plugs, the Hanford tank farm developed waste acceptance criteria that a waste must pass before it can be transferred (Shekarriz et al., 1997). The criteria, which include physical properties such as viscosity, specific gravity, and percent solids, are based primarily on past operational experience. Unfortunately, the chemistry of the waste solutions was not included in the criteria even though the tank farm operators are fully aware of its importance. Pipeline plugs have also occurred during relatively short waste transfers at Hanford. In FY 2000, the effort to saltwell pump 50,000 gal of filtered waste from tank U-103 to tank SY-102 was delayed for several weeks due to a plugged pipeline. Attempts to locate the plug(s) determined that it had occurred in the 02-A flex and that other plugs were possible in each of the SY-farm flexes. Modifications such as larger flex jumpers and additional heat tracing were made to the transfer system. The plug was probably attributable to a reduction in the temperature of the waste in the pipeline. The waste in tank U-103 was approximately 30 C prior to the transfer. During tests on actual waste from tank U-103 (Herting, 1999), trisodium phosphate solids were observed at temperatures as high as 20 C after a 50% dilution with water. Therefore, the following precautions (Herting, 1999) were recommended during the saltwell pumping of tank U-103. First, the tank waste should not be heated prior to the transfer. Second, the waste should not ...
Date: February 6, 2001
Creator: Hunt, R.D.
Partner: UNT Libraries Government Documents Department