316 Matching Results

Search Results

Advanced search parameters have been applied.

Structure and Propagation of Turbulent Bunsen Flames

Description: From Introduction and Summary: "In the assessments of research objectives after World War II it was brought out that little effort had yet been expended on an understanding of turbulent flames.The present report deals exclusively with a second stage of work which was carried out between November 1954 and August 1959. This summary report includes a few new data, but its chief purpose is to reorient the findings toward a better appreciation of what has been accomplished and what most profitably might be done in the near future."
Date: 1962
Creator: Burgess, David
Partner: UNT Libraries Government Documents Department

A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures

Description: Very lean hydrogen-air mixtures experience strong diffusive-thermal types of cellular instabilities that tend to increase the laminar burning velocity above the value that applies to steady, planar laminar flames that are homogeneous in transverse directions. Flame balls constitute an extreme limit of evolution of cellular flames. To account qualitatively for the ultimate effect of diffusive-thermal instability, a model is proposed in which the flame is a steadily propagating, planar, hexagonal, close-packed array of flame balls, each burning as if it were an isolated, stationary, ideal flame ball in an infinite, quiescent atmosphere. An expression for the laminar burning velocity is derived from this model, which theoretically may provide an upper limit for the experimental burning velocity.
Date: June 30, 2008
Creator: Williams, Forman; Williams, Forman A & Grcar, Joseph F
Partner: UNT Libraries Government Documents Department

Some effects of small-scale flow disturbance on nozzle-burner flames

Description: Laminar-like and brush-like propane-air flames were obtained when wire grids were used as turbulence generators in a 1/2-inch nozzle burner. The laminar-like flames for grid-disturbed flow had a slightly higher burning velocity than "true" laminar flames (no grid used). The brush-like flames were similar to those obtained with pipe turbulent flow. Their burning-velocity dependence on a "flow disturbance" Reynolds number compared favorably with that obtained for pipe turbulent flames. Hot-wire-anemometer equipment was used to measure the flow disturbance intensity in the cold flow with and without the grids in place.
Date: September 1956
Creator: Wong, Edgar L.
Partner: UNT Libraries Government Documents Department

Effect of pressure and duct geometry on bluff-body flame stabilization

Description: Report presenting blowoff velocities and recirculation-zone lengths of propane-air flames stabilized by cylindrical flameholders measured as a function of pressure, cylinder diameter, fuel-air ratio, and tunnel geometry for a range of Reynolds numbers. Results regarding blowoff velocities, recirculation-zone lengths, critical time, and heat losses from recirculation zone are provided.
Date: September 1958
Creator: Potter, Andrew E., Jr. & Wong, Edgar L.
Partner: UNT Libraries Government Documents Department

The Soret Effect in Naturally Propagating, Premixed, Lean, Hydrogen-Air Flames

Description: Comparatively little attention has been given to multicomponent diffusion effects in lean hydrogen-air flames, in spite of the importance of these flames in safety and their potential importance to future energy technologies. Prior direct numerical simulations either have considered only the mixture-averaged transport model, or have been limited to stabilized flames that do not exhibit the thermo-diffusive instability. The so-called full, multicomponent transport model with cross-diffusion is found to predict hotter, significantly faster flames with much faster extinction and division of cellular structures.
Date: June 30, 2008
Creator: Grcar, Joseph F.; Grcar, Joseph F.; Bell, John B. & Day, Marcus S.
Partner: UNT Libraries Government Documents Department

Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH(i)-seeded non-premixed methane/air flame

Description: In this paper we study the formation of NO in laminar, nitrogen diluted methane diffusion flames that are seeded with ammonia in the fuel stream. We have performed numerical simulations with detailed chemistry as well as laser-induced fluorescence imaging measurements for a range of ammonia injection rates. For comparison with the experimental data, synthetic LIF images are calculated based on the numerical data accounting for temperature and fluorescence quenching effects. We demonstrate good agreement between measurements and computations. The LIF corrections inferred from the simulation are then used to calculate absolute NO mole fractions from the measured signal.The NO formation in both doped and undoped flames occurs in the flame sheet. In the undoped flame, four different mechanisms including thermal and prompt NO appear to contribute to NO formation. As the NH3 seeding level increases, fuel-NO becomes the dominant mechanism and N2 shifts from being a net reactant to being a net product. Nitric oxide in the undoped flame as well as in the core region of the doped flames are underpredicted by the model; we attribute this mainly to inaccuracies in the NO recycling chemistry on the fuel-rich side of the flame sheet.
Date: December 14, 2001
Creator: Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Bessler, Wolfgang G.; Schulz, Christof; Glarborg, Peter et al.
Partner: UNT Libraries Government Documents Department

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames

Description: This paper presents topology-based methods to robustly extract, analyze, and track features defined as subsets of isosurfaces. First, we demonstrate how features identified by thresholding isosurfaces can be defined in terms of the Morse complex. Second, we present a specialized hierarchy that encodes the feature segmentation independent of the threshold while still providing a flexible multi-resolution representation. Third, for a given parameter selection we create detailed tracking graphs representing the complete evolution of all features in a combustion simulation over several hundred time steps. Finally, we discuss a user interface that correlates the tracking information with interactive rendering of the segmented isosurfaces enabling an in-depth analysis of the temporal behavior. We demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally extinguished regions. The number, area, and evolution over time of these cells provide important insights into the impact of turbulence on the combustion process. Utilizing the hierarchy we can perform an extensive parameter study without re-processing the data for each set of parameters. The resulting statistics enable scientist to select appropriate parameters and provide insight into the sensitivity of the results wrt. to the choice of parameters. Our method allows for the first time to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly segmented and selected. In particular, our analysis shows that counter-intuitively stronger turbulence leads to larger cell structures, which burn more intensely than expected. This behavior suggests that flames could be stabilized under much leaner conditions than previously anticipated.
Date: June 1, 2009
Creator: Bremer, Peer-Timo; Weber, Gunther; Pascucci, Valerio; Day, Marc & Bell, John
Partner: UNT Libraries Government Documents Department

Numerical simulation of low Mach number reacting flows

Description: Using examples from active research areas in combustion andastrophysics, we demonstrate a computationally efficient numericalapproach for simulating multiscale low Mach number reacting flows. Themethod enables simulations that incorporate an unprecedented range oftemporal and spatial scales, while at the same time, allows an extremelyhigh degree of reaction fidelity. Sample applications demonstrate theefficiency of the approach with respect to a traditional time-explicitintegration method, and the utility of the methodology for studying theinteraction of turbulence with terrestrial and astrophysical flamestructures.
Date: June 20, 2007
Creator: Bell, John B.; Aspden, Andrew J.; Day, Marcus S. & Lijewski,Michael J.
Partner: UNT Libraries Government Documents Department

Effect of equivalence ratio on premixed flame response to unsteady strain-rate and curvature

Description: The detailed dynamical response of flames in turbulent reacting flow involves a complex interaction between unsteady flow structures and flame chemistry. Two essential features of this interaction are the unsteady strain-rate and curvature disturbances to the reaction zone. In this work, the authors focus on a single flow length/time scale feature in two dimensions (2D), and its effect on a premixed flame for a range of mixture conditions. In particular, they study the interaction of a premixed freely propagating methane-air flame with a 2D counter-rotating vortex pair in an unbounded domain. In earlier work, they studied this flow using C{sub 1} kinetics, at stoichiometric conditions. Notable observations include the shift of the reaction zone into the products on the vortex-pair centerline, leading to depletion of H, O and OH, and the consequent general drop in reaction rates on the centerline flame segment. Curvature-induced focusing/defocusing effects were observed at the positively curved flame cusp, leading to modifications in internal transport fluxes of various species and radicals in the flame, and associated effects on H production and fuel consumption rates. These results were extended to more detailed kinetics, using other C{sub 1} and C{sub 2} mechanisms, which demonstrated the effect of choice of chemical mechanism on the observed transient flame response. The present study focuses on the dependence of the transient flame response on reactants mixture equivalence ratio. Two reactants mixture conditions are studied: case 1 is a stoichiometric conditions - equivalence ratio {Phi} = 1.0, and case 2 is rich at {Phi} = 1.2. In both cases, the reactants are 20% N{sub 2}-diluted.
Date: November 1, 1997
Creator: Najm, H.N.; Wyckoff, P.S. & Knio, O.M.
Partner: UNT Libraries Government Documents Department

The time evolution of a vortex-flame interaction observed via planar imaging of CH and OH

Description: Planar laser-induced fluorescence imaging diagnostics of OH and CH are used to examine a premixed laminar flame subjected to a strong line-vortex pair. Results are reported for a fuel-rcih lamiar CH{sub 4}-air-N{sub 2} rod-stabilized flame. The flow studied was highly reproducible, which enabled the use of phase-sampled imaging to provide time-resolved image sequences. Image sequences are shown for a condition sufficient to produce localized extinction of the primary flame. Results indicate that a breakage in the CH front is not preceded by any distinct change in the OH front. The structure of the CH and OH profiles during the transient leading up to, and through the breakage of the CH front do not appear to be consistent with the concept of a strained laminar flame.
Date: May 1, 1996
Creator: Nguyen, Quang-Viet & Paul, P.H.
Partner: UNT Libraries Government Documents Department

Combustion Characterization of Coal Fines Recovered from the Handling Plant

Description: Effect of swirl settings on NO{sub x} for three firing rates were investigated. It was found that the variation of NO{sub x} concentrations with respect to the change in swirl numbers was significant. But, the variation of NO{sub x} Concentration with respect to firing rates was found to be consistent with the increase in firing rates. The flame stability was accessed by the visual observation of the flame with relation to the burner quarl.
Date: October 1, 1996
Creator: Masudi, Houshang; Samudrala, Surender Rao; Chenevert, Lisa; Cornelius, Christopher & Dwivedi, S. N.
Partner: UNT Libraries Government Documents Department

Partially-Premixed Flames in Internal Combustion Engines

Description: This was a joint university-industry research program funded by the Partnerships for the Academic-Industrial Research Program (PAIR). The research examined partially premixed flames in laboratory and internal combustion engine environments at Vanderbilt University, University of Michigan, and General Motors Research and Development. At Vanderbilt University, stretched and curved ''tubular'' premixed flames were measured in a unique optically accessible burner with laser-induced spontaneous Raman scattering. Comparisons of optically measured temperature and species concentration profiles to detailed transport, complex chemistry simulations showed good correspondence at low-stretch conditions in the tubular flame. However, there were significant discrepancies at high-stretch conditions near flame extinction. The tubular flame predictions were found to be very sensitive to the specific hydrogen-air chemical kinetic mechanism and four different mechanisms were compared. In addition, the thermo-diffusive properties of the deficient reactant, H2, strongly affected the tubular flame structure. The poor prediction near extinction is most likely due to deficiencies in the chemical kinetic mechanisms near extinction. At the University of Michigan, an optical direct-injected engine was built up for laser-induced fluorescence imaging experiments on mixing and combustion under stratified charge combustion conditions with the assistance of General Motors. Laser attenuation effects were characterized both experimentally and numerically to improve laser imaging during the initial phase of the gasoline-air mixture development. Toluene was added to the isooctane fuel to image the fuel-air equivalence ratio in an optically accessible direct-injected gasoline engine. Temperature effects on the toluene imaging of fuel-air equivalence ratio were characterized. For the first time, oxygen imaging was accomplished in an internal combustion engine by combination of two fluorescence trackers, toluene and 3-pentanone. With this method, oxygen, fuel and equivalence ratio were measured in the cylinder. At General Motors, graduate students from the University of Michigan and Vanderbilt University worked with GM researchers to develop high-speed imaging methods ...
Date: November 5, 2003
Creator: Pitz, Robert W.; Drake, Michael C.; Fansler, Todd D. & Sick, Volker
Partner: UNT Libraries Government Documents Department

Investigation of H2 Concentration and Combustion Instability Effects on the Kinetics of Strained Syngas Flames

Description: The flame extinction limits of syngas (H{sub 2}-CO) flames were measured using a twin-flame-counter-flow burner. Plots of Extinction limits vs. global stretch rates were generated at different mixture compositions and an extrapolation method was used to calculate the flame extinction limit corresponding to an experimentally unattainable zero-stretch condition. The zero-stretch extinction limit of H{sub 2}-CO mixtures decreases (from rich to lean) with the increase in H{sub 2} concentration in the mixture. The average difference between the measured flame extinction limit and the Le Chatelier's calculation is around {approx} 7%. The measured OH{sup -} chemiluminescent data indicates that regardless of mixture compositions the OH radical concentration reduces (within the experimental uncertainties) to an extinction value prior to the flame extinction. Flame extinction limits of H{sub 2}-CO mixtures measured in a flat-flame burner configuration also show a similar relation. Additionally, the measured laminar flame velocity close to the extinction indicates that regardless of fuel composition the premixed flame of hydrogen fuel blends extinguishes when the mixture laminar flame velocity falls below a critical value. The critical laminar flame velocity at extinction for H{sub 2}-CO premixed flames (measured in the flat flame burner configuration) is found to be 3.77({+-}0.38) cm/s. An externally perturbed H{sub 2}-CO twin flame was not experimentally achievable for the mixture conditions used in the present investigation. A slightest perturbation in the flow-field distorts the H{sub 2}-CO twin-flame. The flame becomes highly unstable with the introduction of an externally excited flow oscillation.
Date: August 7, 2006
Creator: Choudhuri, Ahsan R.
Partner: UNT Libraries Government Documents Department

Experimental and Modeling Studies of the Characteristics of Liquid Biofuels for Enhanced Combustion

Description: The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of biodiesel fuels and appropriately associated model fuels that may represent biodiesels in automotive engineering simulation. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were BQ-9000 certified biodiesel fuels that are certified for use in automotive engine applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multi-dimensional simulation of the combustion characteristics of such fuels in reciprocating engines. Such reliable kinetics models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal engines, engine operation and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics. During this project, we completed a major and thorough validation of a set of biodiesel surrogate components, allowing us to begin to evaluate the fundamental combustion characteristics for B100 fuels.
Date: July 1, 2009
Creator: Meeks, E.; Modak, A. U.; Naik, C.V.; Puduppakkam, K. V.; Westbrook, C.; Egolfopoulos, F. N. et al.
Partner: UNT Libraries Government Documents Department

Numerical simulation of laminar reacting flows with complex chemistry

Description: We present an adaptive algorithm for low Mach number reacting flows with complex chemistry. Our approach uses a form of the low Mach number equations that discretely conserves both mass and energy. The discretization methodology is based on a robust projection formulation that accommodates large density contrasts. The algorithm uses an operator-split treatment of stiff reaction terms and includes effects of differential diffusion. The basic computational approach is embedded in an adaptive projection framework that uses structured hierarchical grids with subcycling in time that preserves the discrete conservation properties of the underlying single-grid algorithm. We present numerical examples illustrating the performance of the method on both premixed and non-premixed flames.
Date: December 1, 1999
Creator: Day, Marcus S. & Bell, John B.
Partner: UNT Libraries Government Documents Department

A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

Description: Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.
Date: June 30, 2008
Creator: Grcar, Joseph F. & Grcar, Joseph F
Partner: UNT Libraries Government Documents Department

A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames

Description: A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.
Date: February 8, 2008
Creator: Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P et al.
Partner: UNT Libraries Government Documents Department

Comprehensive Mechanisms for Combustion Chemistry: An Experimental and Numerical Study with Emphasis on Applied Sensitivity Analysis

Description: This project was an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work were conducted in large-diameter flow reactors, at 0.3 to 18 atm pressure, 500 to 1100 K temperature, and 10<SUP>-2</SUP> to 2 seconds reaction time. Experiments were also conducted to determine reference laminar flame speeds using a premixed laminar stagnation flame experiment and particle image velocimetry, as well as pressurized bomb experiments. Flow reactor data for oxidation experiments include: (1)adiabatic/isothermal species time-histories of a reaction under fixed initial pressure, temperature, and composition; to determine the species present after a fixed reaction time, initial pressure; (2)species distributions with varying initial reaction temperature; (3)perturbations of a well-defined reaction systems (e.g. CO/H<SUB>2</SUB>/O<SUB>2</SUB> or H<SUB>2</SUB>/O<SUB>2</SUB>)by the addition of small amounts of an additive species. Radical scavenging techniques are applied to determine unimolecular decomposition rates from pyrolysis experiments. Laminar flame speed measurements are determined as a function of equivalence ratio, dilution, and unburned gas temperature at 1 atm pressure. Hierarchical, comprehensive mechanistic construction methods were applied to develop detailed kinetic mechanisms which describe the measurements and literature kinetic data. Modeling using well-defined and validated mechanisms for the CO/H<SUB>2</SUB>/Oxidant systems and perturbations of oxidation experiments by small amounts of additives were also used to derive absolute reaction rates and to investigate the compatibility of published elementary kinetic and thermochemical information. Numerical tools were developed and applied to assess the importance of individual elementary reactions to the predictive performance of the developed mechanisms and to assess the uncertainties in elementary rate constant evaluations.
Date: April 10, 2009
Creator: Dryer, Frederick L.
Partner: UNT Libraries Government Documents Department

Understanding and predicting soot generation in turbulent non-premixed jet flames.

Description: This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model to accurately predict gas temperatures and thus soot formation rates. When including ...
Date: October 1, 2010
Creator: Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R. et al.
Partner: UNT Libraries Government Documents Department