195 Matching Results

Search Results

Advanced search parameters have been applied.

Fast Neutron Imaging Systems

Description: 3-dimensional position-sensitive solid state detectors. In particular, extensive investigation had been carried out on 3-D CdZnTe detectors for detection of fission neutrons.
Date: October 11, 2006
Creator: He, Zhong
Partner: UNT Libraries Government Documents Department

Neutron sputtering of gold

Description: From surface effects in controlled thermonuclear fusion devices and reactors meeting; Argonne, Illinois, USA (10 Jan 1974). The sputtering yield of gold bombarded with fission neutrons was studied in the CP-5 reactor. Bulk single crystals were used at near liquid helium temperature. Overall sputtering yields ranged from 1 x 10/sup -3/ to 6 x 10/sup -3/ sputtered gold atoms per incident neutron for doses ranging from 2.1 x 10/sup 17/ to 5.5 x 10/sup 17/ (nvt > 0.1 MeV). Results are roughly an order of magnitude larger than many previoualy reported sputtering yields. Sputtering patterns have not been pursued yet, due to sufficiently high background radiation. (auth)
Date: February 1, 1974
Creator: Kirk, M.A.; Blewitt, T.H.; Klank, A.C.; Malewicki, R. & Scott, T.L.
Partner: UNT Libraries Government Documents Department

Event-by-Event Study of Prompt Neutrons from 239Pu

Description: Employing a recently developed Monte Carlo model, we study the fission of {sup 240}Pu induced by neutrons with energies from thermal to just below the threshold for second chance fission. Current measurements of the mean number of prompt neutrons emitted in fission, together with less accurate measurements of the neutron energy spectra, place remarkably fine constraints on predictions of microscopic calculations. In particular, the total excitation energy of the nascent fragments must be specified to within 1 MeV to avoid disagreement with measurements of the mean neutron multiplicity. The combination of the Monte Carlo fission model with a statistical likelihood analysis also presents a powerful tool for the evaluation of fission neutron data. Of particular importance is the fission spectrum, which plays a key role in determining reactor criticality. We show that our approach can be used to develop an estimate of the fission spectrum with uncertainties several times smaller than current experimental uncertainties for outgoing neutron energies of less than 2 MeV.
Date: January 15, 2010
Creator: Vogt, R; Randrup, J; Pruet, J & Younes, W
Partner: UNT Libraries Government Documents Department

Neutron coincidence imaging for active and passive neutron assays

Description: Neutron multiplicity assay algorithms for {sup 240}Pu assume a point source of fission neutrons that are detected in a single detector channel. The {sup 240}Pu in real waste, however, is more likely to be distributed throughout the container in some random way. For different reasons, this leads to significant errors when using either multiplicity or simpler coincidence analyses. Reduction of these errors can be achieved using tomographic imaging. In this talk we report on our results from using neutron singles and coincidence data between tagged detector pairs to provide enhanced tomographic imaging capabilities to a crate nondestructive assay system. Only simulated passive coincidence data is examined here, although the higher signal rates from active coincidence counting hold more promise for waste management. The active coincidence approach has significantly better sensitivity than the passive and is not significantly perturbed by (alpha,n) contributions. Our study was based primarily on simulated neutron pulse trains derived from the Los Alamos SIM3D software, which were subjected to analysis using the Los Alamos CTEN-FIT and TGS-FIT software. We found significantly improved imaging capability using the coincidence and singles rate data than could be obtained using the singles rate alone.
Date: January 1, 2001
Creator: Estep, R. J. (Robert J.); Brunson, G. S. (Glenn S.) & Melton, S. G. (Sheila G.)
Partner: UNT Libraries Government Documents Department

KENO lifetimes

Description: When performing k-eigenvalue solutions with KENO-V.a, two different prompt neutron lifetimes are estimated - a system lifetime and a neutron generation time. The meaning of these two lifetimes has been ascertained by comparing values of various neutron lifespans/lifetimes predicted by MCNP and DANTSYS based on the neutron-balance theory. The system lifetime in KENO-Va corresponds to the unweighted removal lifetime calculated by both MCNP and DANTSYS. The unweighted removal lifetime is the average time between removal events resulting from a neutron absorption or a neutron leakage. The generation time in KENO-V.a corresponds to the fission lifespan calculated by MCNP, where the fission lifespan in MCNP represents the average time for a newly born neutron to cause another fission. As such, the generation time in KENO-Va does not represent the generation time that appears in the point kinetic model. The generation time in the point kinetic model is the adjoint-weighted removal lifetime divided by k{sub eff}, which is identically equal to the adjoint-weighted neutron production rate. In small bare systems operating in the vicinity of delayed critical, the difference between the adjoint-weighted neutron generation time and the fission lifespan can be as small as a few percent. However, in reflected systems, the difference between these two quantities can be several orders of magnitude. In conclusion, the prompt neutron generation time predicted by KENO-Va corresponds to the fission lifespan of a prompt neutron in a given system. The fission lifespan is the average time from birth-to-fission and, in general, is not a good approximation for the adjoint-weighted neutron generation time that appears in the point-kinetic model.
Date: January 30, 1997
Creator: Petrie, L.; Parsons, D.K. & Spriggs, G.D.
Partner: UNT Libraries Government Documents Department

The equivalent fundamental-mode source

Description: In 1960, Hansen analyzed the problem of assembling fissionable material in the presence of a weak neutron source. Using point kinetics, he defined the weak source condition and analyzed the consequences of delayed initiation during ramp reactivity additions. Although not clearly stated in Hansen`s work, the neutron source strength that appears in the weak source condition corresponds to the equivalent fundamental-mode source. In this work, we describe the concept of an equivalent fundamental-mode source and we derive a deterministic expression for a factor, g*, that converts any arbitrary source distribution to an equivalent fundamental-mode source. We also demonstrate a simplified method for calculating g* in subcritical systems. And finally, we present a new experimental method that can be employed to measure the equivalent fundamental-mode source strength in a multiplying assembly. We demonstrate the method on the zero-power, XIX-1 assembly at the Fast Critical Assembly (FCA) Facility, Japan Atomic Energy Research Institute (JAERI).
Date: February 1, 1997
Creator: Spriggs, G.D.; Busch, R.D.; Sakurai, Takeshi & Okajima, Shigeaki
Partner: UNT Libraries Government Documents Department

CSER-98-009: antech neutron multiplicity counter for nondestructive analysis

Description: The ANTECH neutron multiplicity counter is a portable nondestructive assay (NDA) instrument which measures plutonium content by counting fission neutrons in the presence of (a,n) neutrons. Neutrons from the (a,n) process are discriminated against through the use of coincidence counting. The instrument will be used for the purpose of determining inventory of plutonium in the Plutonium Finishing Plant (PFP). The portability of the instrument will facilitate this task by minimizing the necessity of transporting fissile material. The use of the Antech counter is approved based on the inherent safety of the containers to be assayed in that an acceptable margin of subcriticality has been demonstrated for all normal and credible abnormal conditions in accordance with HNF-PRO-537 (F, 1997). A summary of the results of the abnormal conditions are tabulated in Table 2. For foreseeable contingencies, the calculated k{sub eff}s are less than 0.95 after taking into account the calculational bias and statistical uncertainty equal to or larger than the 95% confidence level. This approval is based on the requirement that only one container is to be put in the counter at a time and in accordance with the other limits listed in section 1.4. The design of the current instrument conforms with the acceptability criteria which allow the other NDA detectors currently employed at the facility to be safely used.
Date: May 12, 1999
Creator: GOLDBERG, H.J.
Partner: UNT Libraries Government Documents Department

Irradiation-Induced Nanostructures

Description: This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.
Date: August 9, 1999
Creator: Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M. et al.
Partner: UNT Libraries Government Documents Department


Description: The Multi-Step Direct (MSD) module TRISTAN in the nuclear reaction code EMPIRE has been extended in order to account for nuclear deformation. The new formalism was tested in calculations of neutron emission spectra emitted from the {sup 232}Th(n,xn) reaction. These calculations include vibration-rotational Coupled Channels (CC) for the inelastic scattering to low-lying collective levels, ''deformed'' MSD with quadrupole deformation for inelastic scattering to the continuum, Multi-Step Compound (MSC) and Hauser-Feshbach with advanced treatment of the fission channel. Prompt fission neutrons were also calculated. The comparison with experimental data shows clear improvement over the ''spherical'' MSD calculations and JEFF-3.1 and JENDL-3.3 evaluations.
Date: April 22, 2007
Creator: WIENKE,H.; CAPOTE, R.; HERMAN, M. & SIN, M.
Partner: UNT Libraries Government Documents Department

Event-by-event study of neutron observables in spontaneous and thermal fission

Description: The event-by-event fission model FREYA is extended to spontaneous fission of actinides and a variety of neutron observables are studied for spontaneous fission and fission induced by thermal neutrons with a view towards possible applications for SNM detection. We have shown that event-by-event models of fission, such as FREYA, provide a powerful tool for studying fission neutron correlations. Our results demonstrate that these correlations are significant and exhibit a dependence on the fissioning nucleus. Since our method is phenomenological in nature, good input data are especially important. Some of the measurements employed in FREYA are rather old and statistics limited. It would be useful to repeat some of these studies with modern detector techniques. In addition, most experiments made to date have not made simultaneous measurements of the fission products and the prompt observables, such as neutron and photons. Such data, while obviously more challenging to obtain, would be valuable for achieving a more complete understanding of the fission process.
Date: September 14, 2011
Creator: Vogt, R & Randrup, J
Partner: UNT Libraries Government Documents Department

Active Neutron Interrogation to Detect Shielded Fissionable Material

Description: Portable electronic neutron generators (ENGs) may be used to interrogate suspicious items to detect, characterize, and quantify the presence fissionable material based upon the measurement of prompt and/or delayed emissions of neutrons and/or photons resulting from fission. The small size (<0.2 m3), light weight (<12 kg), and low power consumption (<50 W) of modern ENGs makes them ideally suited for use in field situations, incorporated into systems carried by 2-3 individuals under rugged conditions. At Idaho National Laboratory we are investigating techniques and portable equipment for performing active neutron interrogation of moderate sized objects less than ~2-4 m3 to detect shielded fissionable material. Our research in this area relies upon the use of pulsed deuterium-tritium ENGs and the measurement of die-away prompt fission neutrons and other neutron signatures in-between neutron pulses from the ENG and after the ENG is turned off.
Date: May 1, 2009
Creator: Chichester, D. L. & Seabury, E. H.
Partner: UNT Libraries Government Documents Department

BF3 Neutron Detector Tests

Description: Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world; thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and detection capabilities are being investigated. Reported here are the results of tests of the efficiency of BF3 tubes at a pressure of 800 torr. These measurements were made partially to validate models of the RPM system that have been modified to simulate the performance of BF3-filled tubes. While BF3 could be a potential replacement for 3He, there are limitations to its use in deployed systems.
Date: December 9, 2009
Creator: Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R. & Woodring, Mitchell L.
Partner: UNT Libraries Government Documents Department

Processing of DNA damage after exposure to a single dose of fission spectrum neutrons takes 40 hours to complete

Description: We have examined the time course over a period of days of repair of chromosomal single-strand breaks (SSB) induced by a single dose of JANUS fission-spectrum neutrons in the DNA of human P3 epithelial teratocarcinoma cells. When the cells are allowed a period of repair incubation the breaks are totally sealed by 7 hours. But then following these initial repair the DNA is dismantled as evidenced by the reappearance of SSBs. This secondary breakage is almost as extensive as that caused by the original neutron exposure, with a maximum at 16-18 hours. Finally, the DNA is rejoined, regaining its original size by 40 hours after irradiation. The secondary repair phenomenon may have an editing function, or it many represent the processing of residual damage left unrepaired during the initial rejoining of the backbone breaks.
Date: November 1, 1996
Creator: Peak, J.G. & Peak, M.J.
Partner: UNT Libraries Government Documents Department

Expected precision for neutron multiplicity assay using higher order moments

Description: This paper reports on the development of a new Figure of Merit code that can calculate the expected precision in neutron multiplicity assay using higher order moments. The code is used to provide a first look at the quadruple coincidence count rate and its expected precision. The results are good enough to warrant further study of potential applications of quadruple (quad) coincidences for large multiplying plutonium items. Also, the new code makes it possible to estimate the multiplicity assay precision if only randomly-triggered moments are used. This approach is described briefly, along with the current status of the investigation.
Date: November 1, 1997
Creator: Ensslin, N.; Gavron, A. & Harker, W.C.
Partner: UNT Libraries Government Documents Department

Multigene deletions in lung adenocarcinomas from irradiated and control mice

Description: K-ras codon 12 point mutations mRb and p53 gene deletions were examined in tissues from 120 normal lungs and lung adenocarcinomas that were Formalin-treated and paraffin-embedded 25 years ago. The results showed that 12 of 60 (20%) lung adenocarcinomas had mRb deletions. All lung adenocarcinomas that were initially found bearing deleted mRb had p53 deletions (15 of 15; 100%). A significantly higher mutation frequency for K-ras codon 12 point mutations was also found in the lung adenocarcinomas from mice exposed to 24 once-weekly neutron irradiation (10 of 10; 100%) compared with those exposed to 24 or 60 once-weekly {gamma}-ray doses (5 of 10; 50%). The data suggested that p53 and K-ras gene alterations were two contributory factors responsible for the increased incidence of lung adenocarcinoma in B6CF{sub 1} male mice exposed to protracted neutron radiation.
Date: June 1, 1996
Creator: Zhang, Y. & Woloschak, G.E.
Partner: UNT Libraries Government Documents Department

Passive NMIS Measurements to Estimate the Shape of Plutonium Assemblies

Description: A new technique to estimate the shape attribute of plutonium assemblies using the Nuclear Materials Identification System (NMIS) is described. The proposed method possesses a number of advantages. It is passive no external radiation source is required to estimate the shape of plutonium assemblies. Instead, inherent gamma and neutron emissions from spontaneous fission of {sup 240}Pu and subsequent induced fission of {sup 239}Pu are detected to estimate the shape attribute. The technique is also stationary: shape is estimated without scanning the assembly by moving the detectors relative to the assembly. The proposed method measures third order correlations between triplets of gamma/neutron-sensitive detectors. The real coincidence of a pair of gammas is used as a ''trigger'' to approximately identify the time of a spontaneous or induced fission event. The spatial location of this fission event is inferred from the real coincidence of a subsequent neutron with the initial pair of correlated gammas by using the neutron's time-of-flight (approximately the delay between the gamma pair and the neutron) and the fission neutron spectra of {sup 240}Pu and {sup 239}Pu. The spatial distribution of fission sites and hence the approximate shape of the plutonium assembly is thereby inferred by measuring the distribution of a large number of these correlated triplets. Proof-of-principle measurements were performed using {sup 252}Cf as a surrogate for {sup 240}Pu to demonstrate that the technique is feasible. For the simple shapes approximated with {sup 252}Cf sources, the measurements showed that the proposed method is capable of correctly identifying the shape and accurately estimating its size to within a few percent of actual.
Date: July 22, 1999
Creator: Mattingly, J.K.; Chiang, L.G.; March-Leuba, J.A.; Mihalczo, J.T.; Mullens, J.A.; Perez, R.B. et al.
Partner: UNT Libraries Government Documents Department


Description: The maxima value of the depth dose coefficient for fission neutrons in ICRP Publication 21 was a reasonable estimator of the effective dose coefficient recently tabulated in ICRP Publication 74. Thus the inflation of the coefficient in the 1996 Q-System analysis (IAEA 2000b) for the purpose of being consistent with respect to ICRP guidance on the neutron weighting factor was unnecessary from the standpoint of the effective dose. The consequence resulted in an unnecessarily restrictive value of A{sub 1} for {sup 248}Cm, {sup 252}Cf, and {sup 254}Cf. The calculations presented here support a relaxation of the A{sub 1} limits for these radionuclides.
Date: September 17, 2001
Creator: Rawl, R.R.
Partner: UNT Libraries Government Documents Department

Preparation of Small Well Characterized Plutonium Oxide Reference Materials and Demonstration of the Usefulness of Such Materials for Nondestructive Analysis

Description: Calibration of neutron coincidence and multiplicity counters for passive nondestructive analysis (NDA) of plutonium requires knowledge of the detector efficiency parameters. These are most often determined empirically. Bias from multiplication and unknown impurities may be incurred even with small plutonium metal samples. Five sets of small, pure plutonium metal standards prepared with well-known geometry and very low levels of impurities now contribute to determining accurate multiplication corrections. Recent measurements of these metal standards, with small but well-defined multiplication and negligible yield of other than fission neutrons, demonstrate an improved characterization and calibration of neutron coincidence/multiplicity counters. The precise knowledge of the mass and isotopic composition of each standard also contributes significantly to verifying the accuracy of the most precise calorimetry and gamma-ray spectroscopy measurements.
Date: January 1, 2003
Creator: Guillen, B.A.; Hsue, S.T.; Huang, J.Y; Hypes, P.A.; Long, S.M.; Rudy, C.R. et al.
Partner: UNT Libraries Government Documents Department

Superconducting Gamma/Neutron Spectrometer Task 1 Completion Report Evaluation of Candidate Neutron-Sensitive Materials

Description: A review of the scientific literature regarding boron- and lithium-containing compounds was completed. Information such as Debye temperature, heat capacity, superconductivity properties, physical and chemical characteristics, commercial availability, and recipes for synthesis was accumulated and evaluated to develop a list of neutron-sensitive materials likely to perform properly in the spectrometer. The best candidate borides appear to be MgB{sub 2} (a superconductor with T{sub c} = 39 K), B{sub 6}Si, B{sub 4}C, and elemental boron; all are commercially available. Among the lithium compounds are LiH, LiAl, Li{sub 12}Si{sub 7}, and Li{sub 7}Sn{sub 2}. These materials have or are expected to have high Debye temperatures and sufficiently low heat capacities at 100 mK to produce a useful signal. The responses of {sup 10}B and {sup 6}Li to a fission neutron spectrum were also estimated. These demonstrated that the contribution of scattering events is no more than 3% in a boron-based system and 1.5% in a lithium-based system. This project is concerned with the development of materials for use in a cryogenic neutron spectrometer and is complementary to work in progress by Labov at LLNL to develop a cryogenic gamma ray spectrometer. Refrigeration to 100 mK lowers the heat capacity of these materials to the point that the energy of absorbed gamma and x rays, nuclei scattered by fast neutrons, and ions from (n, {alpha}) reactions produce a measurable heat pulse, from which the energy of the incident radiation may be deduced. The objective of this project is the discovery, fabrication, and testing of candidate materials with which a cryogenic neutron spectrometer may be realized.
Date: June 20, 2002
Creator: Bell, Z.W. & Lamberti, V.E.
Partner: UNT Libraries Government Documents Department

Oboe Transparency Results - Oboes 1-9

Description: The motivation for the ''Transparency'' experiment is that DOE/DP would like to have data available to show to interested parties, such as the JASONs. The U1a subcritical experiments are consistent with U.S. policy on nuclear testing. This would be done in a spirit of ''Transparency'' if doubts should arise. Thus, the objective of the ''Transparency'' measurements on the Oboe series is to place an upper bound on the nuclear energy released in the subcritical experiments. Two separate experimental packages cover the transparency measurement issue thoroughly. These are: (1) Neutron Track-Etch Dosimetry. (2) Scintillator Fission Neutron/Gamma Rate Measurement. Because the containment barrier is only 1-inch steel, plus 6-inch shotcrete, it is quite transparent to fission neutrons and, thus, both experiments can be mounted outside the containment barrier and can be recovered post shot. An additional group of dosimeters was placed on the lid of the vessel for greater sensitivity.
Date: October 15, 2002
Creator: Heinle, R A
Partner: UNT Libraries Government Documents Department

Tissues from the irradiated dog/mouse archive

Description: The purpose of this project is to organize the databases/information and organize and move the tissues from the long-term dog (4,000 dogs) and mouse (over 30,000 mice) radiation experiments done at Argonne National Laboratory during the 1970's and 80's to Northwestern University. These studies were done with the intention of understanding the effects of exposure to radiation at a variety of different doses, dose-rates, and radiation qualities on end-points such as life-shortening, carcinogenesis, cause of death, shifts in disease incidence and other biological parameters. Organ and tissue samples from these animals including cancers, metastases and other significant degenerative and inflammatory lesions and those in a regular protocol of normal tissues were preserved in paraffin blocks, tissue impressions and sections and represent a great resource for the radiation biology community. These collections are particularly significant since these experiments are not likely to be repeated because of the extreme cost of monies and time for such large-scale animal studies. The long-term goal is to make these tissues and databases available to the wider scientific community so that questions such as tissue sensitivity, early and late effects, low dose and protracted dose responses of normal and tumor tissues, etc. can be examined and defined. Recent advances in biology particularly at the subcellular and molecular level now permit microarray-based gene expression array analyses from paraffin-embedded tissues (where RNA samples are significantly degraded), synchrotron-based studies of metal and other elemental distribution patterns in tissues, PCR-based analyses for mutation detection, and other similar approaches that were not available when the longĀ¬ term animal studies were designed and initiated. Understanding the basis and progression of radiation damage should also permit rational approaches to prevention and mitigation of those damages. Therefore, as stated earlier, these tissues and their related documentation, represent a significant resource for future studies. For ...
Date: April 1, 2007
Creator: Woloschak, Gayle
Partner: UNT Libraries Government Documents Department


Description: Recent extensions and improvements of the EMPIRE code system are outlined. They add new capabilities to the code, such as prompt fission neutron spectra calculations using Hauser-Feshbach plus pre-equilibrium pre-fission spectra, cross section covariance matrix calculations by Monte Carlo method, fitting of optical model parameters, extended set of optical model potentials including new dispersive coupled channel potentials, parity-dependent level densities and transmission through numerically defined fission barriers. These features, along with improved and validated ENDF formatting, exclusive/inclusive spectra, and recoils make the current EMPIRE release a complete and well validated tool for evaluation of nuclear data at incident energies above the resonance region. The current EMPIRE release has been used in evaluations of neutron induced reaction files for {sup 232}Th and {sup 231,233}Pa nuclei in the fast neutron region at IAEA. Triple-humped fission barriers and exclusive pre-fission neutron spectra were considered for the fission data evaluation. Total, fission, capture and neutron emission cross section, average resonance parameters and angular distributions of neutron scattering are in excellent agreement with the available experimental data.
Date: April 22, 2007
Partner: UNT Libraries Government Documents Department