318 Matching Results

Search Results

Advanced search parameters have been applied.

A Determination of the Fine Structure Constant Using Precision Measurements of Helium Fine Structure

Description: Spectroscopic measurements of the helium atom are performed to high precision using an atomic beam apparatus and electro-optic laser techniques. These measurements, in addition to serving as a test of helium theory, also provide a new determination of the fine structure constant α. An apparatus was designed and built to overcome limitations encountered in a previous experiment. Not only did this allow an improved level of precision but also enabled new consistency checks, including an extremely useful measurement in 3He. I discuss the details of the experimental setup along with the major changes and improvements. A new value for the J = 0 to 2 fine structure interval in the 23P state of 4He is measured to be 31 908 131.25(30) kHz. The 300 Hz precision of this result represents an improvement over previous results by more than a factor of three. Combined with the latest theoretical calculations, this yields a new determination of α with better than 5 ppb uncertainty, α-1 = 137.035 999 55(64).
Date: August 2010
Creator: Smiciklas, Marc
Partner: UNT Libraries

Comparison of EXAFS Foil Spectra from Around the World

Description: The EXAFS spectra of Cu and Pd foil from many different beamlines and synchrotrons are compared to address the dependence of the amplitude reduction factor (S{sub 0}{sup 2}) on beamline specific parameters. Even though S{sub 0}{sup 2} is the same parameter as the EXAFS coordination number, the value for S{sub 0}{sup 2} is given little attention, and is often unreported. The S{sub 0}{sup 2} often differs for the same material due to beamline and sample attributes, such that no importance is given to S{sub 0}{sup 2}-values within a general range of 0.7 to 1.1. EXAFS beamlines have evolved such that it should now be feasible to use standard S{sub 0}{sup 2} values for all EXAFS measurements of a specific elemental environment. This would allow for the determination of the imaginary energy (Ei) to account for broadening of the EXAFS signal rather than folding these errors into an effective S{sub 0}{sup 2}-value. To test this concept, we model 11 Cu-foil and 6 Pd-foil EXAFS spectra from around the world to compare the difference in S{sub 0}{sup 2}- and Ei-values.
Date: July 16, 2010
Creator: Kelly, S. D.; Bare, S. R.; Greenlay, N.; Azevedo, G.; Balasubramanian, M.; Barton, D. et al.
Partner: UNT Libraries Government Documents Department

Is U3Ni3Sn4 best described as near a quantum critical point?

Description: Although most known non-Fermi liquid (NFL) materials are structurally or chemically disordered, the role of this disorder remains unclear. In particular, very few systems have been discovered that may be stoichiometric and well ordered. To test whether U{sub 3}Ni{sub 3}Sn{sub 4} belongs in this latter class, we present measurements of the x-ray absorption fine structure (XAFS) of polycrystalline and single-crystal U{sub 3}Ni{sub 3}Sn{sub 4} samples that are consistent with no measurable local atomic disorder. We also present temperature-dependent specific heat data in applied magnetic fields as high as 8 T that show features that are inconsistent with the antiferromagnetic Griffiths' phase model, but do support the conclusion that a Fermi liquid/NFL crossover temperature increases with applied field. These results are inconsistent with theoretical explanations that require strong disorder effects, but do support the view that U{sub 3}Ni{sub 3}Sn{sub 4} is a stoichoiometric, ordered material that exhibits NFL behavior, and is best described as being near an antiferromagnetic quantum critical point.
Date: April 8, 2003
Creator: Booth, C. H.; Shlyk, L.; Nenkov, K.; Huber, J. G. & De Long, L. E.
Partner: UNT Libraries Government Documents Department

Surface structure of CdSe Nanorods revealed by combined X-rayabsorption fine structure measurements and ab-initio calculations

Description: We report orientation-specific, surface-sensitive structural characterization of colloidal CdSe nanorods with extended X-ray absorption fine structure spectroscopy and ab-initio density functional theory calculations. Our measurements of crystallographically-aligned CdSe nanorods show that they have reconstructed Cd-rich surfaces. They exhibit orientation-dependent changes in interatomic distances which are qualitatively reproduced by our calculations. These calculations reveal that the measured interatomic distance anisotropy originates from the nanorod surface.
Date: January 27, 2006
Creator: Aruguete, Deborah A.; Marcus, Matthew A.; Li, Liang-shi; Williamson, Andrew; Fakra, Sirine; Gygi, Francois et al.
Partner: UNT Libraries Government Documents Department

A Variation of the F-Test for Determining Statistical Relevance ofParticular Parameters in EXAFS Fits

Description: A general problem when fitting EXAFS data is determining whether particular parameters are statistically significant. The F-test is an excellent way of determining relevancy in EXAFS because it only relies on the ratio of the fit residual of two possible models, and therefore the data errors approximately cancel. Although this test is widely used in crystallography (there, it is often called a 'Hamilton test') and has been properly applied to EXAFS data in the past, it is very rarely applied in EXAFS analysis. We have implemented a variation of the F-test adapted for EXAFS data analysis in the RSXAP analysis package, and demonstrate its applicability with a few examples, including determining whether a particular scattering shell is warranted, and differentiating between two possible species or two possible structures in a given shell.
Date: July 25, 2006
Creator: Downward, L.; Booth, C.H.; Lukens, W.W. & Bridges, F.
Partner: UNT Libraries Government Documents Department

A moving target: responding to magnetic and structural disorder in lanthanide- and actinide-based superconductors

Description: The effects of various chemical substitutions and induced lattice disorder in the Ce- and Pu-based 115 superconductors are reviewed, with particular emphasis on results from x-ray absorption fine structure (XAFS) measurements. The PuCoGa{sub 5} system offers the opportunity to follow changes in magnetic and electronic properties due to lattice disorder as a function of time in the same samples, in addition to the more traditional approach of perturbing the superconducting state through chemical substitutions. The reviewed work establishes a baseline for such future studies by determining the intrinsic lattice order in the 115 system, successfully understanding disorder as introduced through chemical substitutions in the Ce-based 115s, and beginning to explore the surprisingly large role of self-irradiation damage directly on the PuCoGa{sub 5} lattice. These studies lay the foundation for the harder future work toward measuring chemical substitutions in PuCoGa{sub 5}, correlating effects with non-Fermi liquid behavior, and obtaining a better structural picture of the distortions induced by {alpha}-decay of the plutonium nucleus.
Date: February 10, 2010
Creator: Booth, Corwin H.; Bauer, Eric D. & Mitchel, Jeremy N.
Partner: UNT Libraries Government Documents Department

Optical Constants of Beryllium from Photoabsorption Measurements for X-Ray Optics Applications

Description: Beryllium (Be) has been recently receiving considerable attention as the key material for a range of potential applications in the extreme ultraviolet (EUV) and x-ray region. Most notably, it has been successfully implemented as the spacer material in beryllium-based multilayer mirrors for EUV lithography, achieving experimental reflectivities of about 70% at wavelengths around 11.4 nm. Knowledge of the absorptive and dispersive properties of this material thus becomes important for the modeling of these optics. Experimental photoabsorption results in the region 40-250 eV, derived from transmission measurements on free-standing beryllium foils, are presented in this work. The measured absorption in the region extending a few tens eV below the K edge (111.7 eV) appears to be significantly (up to 50%) lower than the tabulated values. Fine structure above the K edge is also demonstrated in the measurements. These data are incorporated in an updated set for the atomic scattering factors of beryllium, obtained in the range 0.1-30,000 eV. Finally, the Bragg reflectivity of MO/Be multilayer optics is modeled using the new experimental results.
Date: September 30, 1999
Creator: Soufli, R.; Bajt, S. & Gullikson, E.M.
Partner: UNT Libraries Government Documents Department

X-ray absorption studies of battery materials

Description: X-ray absorption spectroscopy (XAS) is ideal for {ital in}{ital situ} studies of battery materials because both the probe and signal are penetrating x rays. The advantage of XAS being element specific permits investigation of the environment of a constituent element in a composite material. This makes it very powerful for studying electrode additives and corrosion of individual components of complex metal hydride alloys. The near edge part of the spectrum (XANES) provides information on oxidation state and site symmetry of the excited atom. This is particularly useful in study of corrosion and oxidation changes in cathode materials during charge/discharge cycle. Extended fine structure (EXAFS) gives structural information. Thus the technique provides both chemical and structural information. Since XAS probes only short range order, it can be applied to study of amorphous electrode materials and electrolytes. This paper discusses advantages and limitations of the method, as well as some experimental aspects.
Date: October 1, 1996
Creator: McBreen, J.
Partner: UNT Libraries Government Documents Department

Local Structures and Interface Morphology of InGaAsN Thin Films Grown on GaAs

Description: The compound semiconductor system InGaAsN exhibits many intriguing properties which are particularly useful for the development of innovative high efficiency thin film solar cells and long wavelength lasers. The bandgap in these semiconductors can be varied by controlling the content of N and In and the thin films can yet be lattice-matched to GaAs. In the present work, x-ray absorption fine structure (XAFS) and grazing incidence x-ray scattering (GIXS) techniques have been employed to probe the local environment surrounding both N and In atoms as well as the interface morphology of InGaAsN thin films epitaxially grown on GaAs. The soft x-ray XAFS results around nitrogen K-edge reveal that N is in the sp{sup 3} hybridized bonding configuration in InGaAsN and GaAsN, suggesting that N impurities most likely substitute for As sites in these two compounds. The results of In K-edge XAFS suggest a possible trend of a slightly larger coordination number of As nearest neighbors around In atoms in InGaAsN samples with a narrower bandgap whereas the In-As interatomic distance remains practically the same as in InAs within the experimental uncertainties. These results combined suggest that N-substitution of the As sites plays an important role of bandgap-narrowing while in the meantime counteracting the compressive strain caused by In-doping. Grazing incidence x-ray scattering (GIXS) experiments verify that InGaAsN thin films can indeed form very smooth interfaces with GaAs yielding an average interfacial roughness of 5-20{angstrom}.
Date: February 23, 1999
Creator: Allerman, A.A.; Chen, J.G.; Geisz, J.F.; Huang, S.; Hulbert, S.L.; Jones, E.D. et al.
Partner: UNT Libraries Government Documents Department


Description: Many important classes of materials owe their interesting properties to structures and patterns produced by local atomic deviations from ideal crystallographic positions. The pattern scale may vary from a few atomic spacings to many microns. In a macroscopic sample these deviations may still average to an ideal lattice while retaining the intrinsic fine-scale structures, or a phase transition may create a pattern of variants of a new crystallographic structure. We have carried out experiments on the formation of fine-scale structures in a range of materials, particularly those produced by phase transitions. We have used Resonant Ultrasound Spectroscopy for elastic properties and dissipation, neutron pair-distribution function, and electronic transport measurements to characterize samples. We have carried out extensive dynamical modeling based on Ginzberg-Landau formalisms to simulate the development and appearance of the structures. Our results highlight the importance of long-range strain fields and the intrinsic unstable equilibrium features of the materials studied.
Date: December 1, 2000
Creator: MIGLIORI, A. & AL, ET
Partner: UNT Libraries Government Documents Department

Perturbing the superconducting planes in CeCoIn5 by Snsubstitution

Description: In contrast to substitution on the Co or Ce site, Sn substitution has a remarkably strong effect on superconductivity in CeCoIn{sub 5-x}Sn{sub x}, with T{sub c} {yields} 0 beyond only {approx}3.6% Sn. Instead of being randomly distributed on in-plane and out-of-plane In sites, extended x-ray absorption fine structure measurements show the Sn atoms preferentially substitute within the Ce-In plane. This result highlights the importance of the In(1) site to impurity scattering and clearly demonstrates the two-dimensional nature of superconductivity in CeCoIn{sub 5}.
Date: January 11, 2005
Creator: Daniel, M.; Bauer, E.D.; Han, S.-W.; Booth, C.H.; Cornelius,A.L.; Pagliuso, P.G. et al.
Partner: UNT Libraries Government Documents Department

Local structure around Sn in CeCoIn{sub 5-x}Sn{sub x}

Description: The local structure around Sn dopants in CeCoIn{sub 5-x}Sn{sub z} has been probed by extended x-ray absorption fine structure (EXAFS) technique. The fit results for both x = 0.12 and x = 0.18 clearly indicate the dopant Sn atoms predominantly occupying the planar In(1) site. These results are consistent with the quasi-two-dimensional electronic properties of CeCoIn{sub 5} and is discussed in relation to the observed bulk properties.
Date: June 16, 2004
Creator: Daniel, M.; Han, S.-W.; Booth, C.H.; Cornelius, A.L.; Bauer, E.D. & Sarrao, J.L.
Partner: UNT Libraries Government Documents Department

The QCD string spectrum and conformal field theory

Description: The low energy excitation spectrum of the critical Wilson surface is discussed between the roughening transition and the continuum limit of lattice QCD. The fine structure of the spectrum is interpreted within the framework of two-dimensional conformal field theory.
Date: December 19, 2002
Creator: Juge, Keisuke Jimmy; Kuti, Julius & Morningstar, Colin
Partner: UNT Libraries Government Documents Department


Description: Extended X-ray Absorption Fine Structure (EXAFS) experiments impose stringent requirements on a detection system, due to the need for processing ionizing events at a high rate, typically above of 10Mcps/cm{sup 2}, and with a high resolution, typically better than 300eV. The detection system here presented is being developed targeting these stringent requirements. It is the result of a cooperation between the Instrumentation Division and the National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL). The system is composed of a multi-element Si sensor with dedicated per pixel electronics. The combination of high rate, high resolution and moderate complexity makes this system attractive when compared to other multi-element solutions. In sections 2, 3 and 4 the sensor, the interconnect and the electronics are briefly described. Section 5 reports on the first experimental results.
Date: September 9, 2002
Partner: UNT Libraries Government Documents Department

Pd/Cu site interchange in UCu{sub 5-x}Pd{sub x}

Description: Although Pd/Cu site interchange in the non-Fermi liquid (NFL) material UCu{sub 4}Pd has been observed, the relationship between this disorder and the NFL behavior remains unclear. In order to better compare to the UCu{sub 5-x}Pd{sub x} phase diagram, they report results from Pd K edge x-ray absorption fine structure (XAFS) experiments on this series (x = 0.3-1.5) that determine the fraction of Pd atoms on the nominally Cu (16e) sites, s. They find that for these unannealed samples, s is at least 17% for all the samples measured, even for x < 1.0, although it does climb monotonically beyond its minimum at x = 0.7. These data are compared to changes in the lattice parameter as a function of x.
Date: July 11, 2001
Creator: Booth, C.H.; Bauer, E.D.; Maple, M.B.; Chau, R. & Kwei, G.H.
Partner: UNT Libraries Government Documents Department

New theoretical results on the proton decay of deformed and near-spherical nuclei.

Description: We discuss new theoretical results on the decay of deformed and near-spherical nuclei. We interpret the latest experimental results on deformed odd-A proton emitters, including fine structure, and discuss the use of particle-vibration coupling to calculate the decay rates of near-spherical emitters.
Date: February 18, 2002
Creator: Davids, C. N. & Esbensen, H.
Partner: UNT Libraries Government Documents Department

Measurement of the Electron Affinities of Indium and Thallium

Description: The electron affinities of indium and thallium were measured in separate experiments using the laser-photodetachment electron spectroscopy technique. The measurements were performed at the University of Nevada, Reno. Negative ion beams of both indium and thallium were extracted from a cesium-sputter negative ion source, and mass analyzed using a 90{sup o} bending magnet. The negative ion beam of interest was then crossed at 90{sup o} with a photon beam from a cw 25-Watt Ar{sup +} laser. The resulting photoelectrons were energy analyzed with a 160{sup o} spherical-sector spectrometer. The electron affinity of In({sup 2}P{sub 1/2}) was determined to be 0.404 {+-} 0.009 eV and the electron affinity of thallium was determined to be 0.377 {+-} 0.013 eV. The fine-structure splittings in the ground states of the negative ions were also determined. The experimental measurements will be compared to several recent theoretical predictions.
Date: March 20, 1999
Creator: Thompson, J. S.; Carpenter, D. L.; Covington, A. M.; Williams, W. W.; Kvale, T. J. & Seely, D. G.
Partner: UNT Libraries Government Documents Department

"Superbursts": Investigation of Abnormal Paroxysmal Bursting Activity in Nerve Cell Networks In Vitro

Description: Superbursts (SBs) are large, seemingly spontaneous activity fluctuations often encountered in high density neural networks in vitro. Little effort has been put forth to define and analyze SBs which are paroxysmal bursting discharges. Through qualitative and quantitative means, I have described specific occurrences of superbursting activity. A complex of paroxysmal bursting has been termed a "superburst episode," and each individual SB is a "superburst event" which is comprises a fine burst structure. Quantitative calculations (employing overall spike summations and coefficient of variation (CV) calculations), reveal three distinct phases. Phase 1 is a "build up" phase of increasingly strong, coordinated bursting with an average of a 17.6% ± 13.7 increase in activity from reference. Phase 2, the "paroxysmal" phase, is comprised of massive coordinated bursting with high frequency spike content. Individual spike activity increases by 52.9% ± 14.6. Phase 3 is a "recovery phase" of lower coordination and an average of a 50.1% ± 35.6 decrease in spike production from reference. SBs can be induced and terminated by physical manipulation of the medium. Using a peristaltic pump with a flow rate of 0.4ml/min, superbursting activity ceases approximately 28.3 min after the introduction of flow. Alternatively, upon cessation of medium flow superbursting activity reemerges after approximately 8.5 min. Additionally, this study explored other methods capable of inducing superbursting activity using osmotic shocks. The induction and termination of SBs demonstrates that the cell culture environment plays a major role in generating this phenomenon. The observations that high density multi-layer neuronal networks in culture are more likely to enter paroxysmal bursting also supports the hypothesis that enrichment and depletion layers of metabolites and ionic species are involved in such unusual activity. The dynamic similarity of the SB phenomenon with epileptiform discharges make further quantification on the spike pattern level pertinent and important.
Date: May 2018
Creator: Suri, Nikita
Partner: UNT Libraries

Nanohardness and chemical bonding of Boron Nitride films

Description: Boron-nitride (BN) films are deposited by the reactive sputter deposition of fully dense, boron targets utilizing a planar magnetron source and an argon-nitrogen working gas mixture. Near-edge x-ray absorption fine structure analysis reveals distinguishing features of chemical bonding within the boron is photoabsorption cross-section. The hardness of the BN film surface is measured using nanoindentation. The sputter deposition conditions as well as the post-deposition treatments of annealing and nitrogen-ion implantation effect the chemical bonding and the film hardness. A model is proposed to quantify the film hardness using the relative peak intensities of the p*-resonances to the boron 1s spectra.
Date: July 8, 1998
Creator: Jankowski, A F
Partner: UNT Libraries Government Documents Department

Role of interfacial dislocations on creep of a fully lamellar tial

Description: Deformation mechanisms of a fully lamellar TiAl ({gamma} lamellae: 100 {approximately} 300 nm thick, {alpha}{sub 2} lamellae: 10 {approximately} 50 nm thick) crept at 760 C have been investigated. It was found that, as a result of a fine structure, the motion and multiplication of dislocations within both {gamma} and {alpha}{sub 2} lamellae are limited at low creep stresses (< 400 MPa). Thus, the glide and climb of lattice dislocations have insignificant contribution to creep deformation. In contrast, the motion of interfacial dislocations on {gamma}{alpha}{sub 2} and {gamma}{gamma} interfaces (i.e. interface sliding) dominates the deformation at low stresses. The major obstacles impeding the motion of interfacial dislocations was found to be lattice dislocations impinging on lamellar interfaces. The number of impinging lattice dislocations increases as the applied stress increases and, subsequently, causes the pileup of interfacial dislocations on the interfaces. The pileup further leads to the formation of deformation twins. Deformation twinning activated by the pileup of interfacial dislocations is suggested to be the dominant deformation mechanism at high stresses (> 400 MPa).
Date: August 16, 1999
Creator: Hsiung, L M & Nieh, T G
Partner: UNT Libraries Government Documents Department

Electronic effects at interfaces in Cu - Cr, Mo, Ta, Re Multilayers

Description: In this study we characterize electronic effects in short-period ({approx}20 {angstrom}) metallic multilayer films in which 40% of the atoms are at an interface using near-edge (L{sub 3,2}) x-ray absorption. This study investigates Cu/TM where TM = Cr, MO, W, Ta, Re. These immiscible elemental pairs are ideal to study as they form no compounds and exhibit terminal solid solubility. An interest in the charge transfer between elements in alloys and compounds has led to studies using x-ray absorption as described above. Near edge x-ray absorption fine structure (NEXAFS), a technique used for analyzing x-ray absorption near the absorption edge of the element, is especially suited to study the amount of unoccupied states in the conduction band of a metal. The d-metals spectra show large peaks at the absorption edges called ''white lines.'' These are due to the unoccupied d-states just above the Fermi level in these metals. A study of the white lines in the 3d metals show that as the d-band is increasingly occupied the white lines decrease in intensity. Starting with Ti (3d{sup 2} 4s{sup 2}), which has an almost empty d-band and shows strong white lines, the white-line intensities decrease across the Periodic Chart to Cu (3d{sup 10} 4s{sup 1}), which has a full d-band and no white lines. Systematic measurement of the L{sub 3,2} absorption spectra of bulk elemental Cu and Cu in the Cu/TM multilayers enabled measurement of the charge transfer. NEXAFS on metallic multilayers has received less attention than alloys because of the difficulty in synthesizing multilayers with controllability up to the monolayer level and because there is little difference between the signal from the bulk and from longer period (> 30 {angstrom}) multilayers. For high-quality short period multilayers, however, the difference is clear. This is highlighted in a study of short period ...
Date: June 28, 1999
Creator: Barbee, T. W.; Bello, A. F.; Klepeis, J. E. & Van Buuren, T.
Partner: UNT Libraries Government Documents Department

Influence of molecular ordering on electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers on Au (111)

Description: The electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers (SAMs) on Au(111) were investigated using atomic force microscopy (AFM) and near edge x-ray absorption fine structure spectroscopy (NEXAFS). The sample surface was uniformly covered with a molecular film consisting of very small grains. Well-ordered and flat monolayer islands were formed after the sample was heated in nitrogen at 120 oC for 1 h. While lattice resolved AFM images revealed a crystalline phase in the islands, the area between islands showed no order. The islands exhibit substantial reduction (50percent) in friction, supporting the existence of good ordering. NEXAFS measurements revealed an average upright molecular orientation in the film, both before and after heating, with a narrower tilt-angle distribution for the heated fim. Conductance-AFM measurements revealed a two orders of magnitude higher conductivity on the ordered islands than on the disordered phase. We propose that the conductance enhancement is a result of a better pi-pi stacking between the trans-stilbene molecular units as a result of improved ordering in islands.
Date: April 21, 2010
Creator: Qi, Yabing; Liu, Xiaosong; Hendriksen, B.L.M.; Navarro, V.; Park, Jeong Y.; Ratera, Imma et al.
Partner: UNT Libraries Government Documents Department