3 Matching Results

Search Results

Advanced search parameters have been applied.

Film Boiling on Downward Quenching Hemisphere of Varying Sizes

Description: Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Laminar Transition Apparatus). Two test sections are made of copper to maintain low Biot numbers. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of all the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the test sections. The measured data are compared with the numerical predictions from laminar film boiling analysis. The measured heat transfer coefficients are found to be greater than those predicted by the conventional laminar flow theory on account of the interfacial wavy motion incurred by the Helmholtz instability. Incorporation of the wavy motion model considerably improves the agreement between the experimental and numerical results in terms of heat transfer coefficient. In addition, the interfacial wavy motion and the quenching process are visualized through a digital camera.
Date: April 1, 2004
Creator: Kim, Chan S.; Suh, Kune Y.; Rempe, Joy L.; Cheung, Fan-Bill & Kim, Sang B.
Partner: UNT Libraries Government Documents Department

SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

Description: Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. A design is also described for implementing a model of heat transfer by radiation from debris to the interstitial fluid. A design is described for implementation of models for flow losses and interphase drag in porous debris. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected ...
Date: September 1, 1998
Creator: Coryell, E. W.; Siefken, L. J. & Paik, S.
Partner: UNT Libraries Government Documents Department