26 Matching Results

Search Results

Advanced search parameters have been applied.

Modelling of Field-Reversed Configuration Experiment with Large Safety Factor

Description: The Translation-Confinement-Sustainment facility has been operated in the 'translation-formation' mode in which a plasma is ejected at high-speed from a {theta}-pinch-like source into a confinement chamber where it settles into a field-reversed-configuration state. Measurements of the poloidal and toroidal field have been the basis of modeling to infer the safety factor. It is found that the edge safety factor exceeds two, and that there is strong forward magnetic shear. The high-q arises because the large elongation compensates for the modest ratio of toroidal-to-poloidal field in the plasma. This is the first known instance of a very high-{beta} plasma with a safety factor greater than unity. Two-fluid modeling of the measurements also indicate several other significant features: a broad 'transition layer' at the plasma boundary with probable line-tying effects, complex high-speed flows, and the appearance of a two-fluid minimum-energy state in the plasma core. All these features may contribute to both the stability and good confinement of the plasma.
Date: November 28, 2005
Creator: Steinhauer, L; Guo, H; Hoffman, A; Ishida, A & Ryutov, D D
Partner: UNT Libraries Government Documents Department

Inductive Sustainment of Oblate FRCs with the Assistance of Magnetic Diffusion, Shaping and Finite-Lamor Radius Stabilization

Description: Oblate field-reversed configurations FRCs have been sustained for >300 µs, or >15 magnetic diffusion times, through the use of an inductive solenoid. These argon FRCs can have their poloidal flux sustained or increased, depending on the timing and strength of the induction. An inward pinch is observed during sustainment, leading to a peaking of the pressure profile and maintenance of the FRC equilibrium. The good stability observed in argon (and krypton) does not transfer to lighter gases, which develop terminal co-interchange instabilities. The stability in argon and krypton is attributed to a combination of external field shaping, magnetic diffusion, and finite-Larmor radius effects.
Date: July 31, 2008
Creator: S. Gerhardt, E.V. Belova, M. Yamada, H. Ji, M. Inomoto, C.M. Jacobson, R. Maqueda, B. McGeehan and Y. Ren
Partner: UNT Libraries Government Documents Department

High-density FRC formation studies on FRX-L.

Description: FRX-L (Field Reversed configuration experiment - Liner) is a magnetized-target injector for magnetized target fusion (MTF) experiments. It was designed with the goal of producing high-density n-1017 cm3 field reversed configurations (FRCs) and translating them into an aluminum liner (1-mm thick, 10-cm diameter cylindrical shell) for further compression to fusion conditions. Although operation at these high densities leads to shorter FRC lifetimes, our application requires thlat the plasma live only long enough to be translated and compressed, or on the order of 10-20 ps. Careful study of FRC formation in situ will be done in the present experiment to differentiate between effects introduced in future experiments by translation, trapping, and compression of the FRC. We present current results on the optimization of the FRC formation process on RX-L and compare the results with those from past experiments.
Date: January 1, 2002
Creator: Taccetti, J. M. (Jose Martin); Intrator, Thomas; Zhang, S. (Shouyin); Wurden, G. A. (Glen A.); Begay, D. W. (Daniel W.); Mignardot, E. R. (Edward R.) et al.
Partner: UNT Libraries Government Documents Department

HIFLUX: OBLATE FRCS, DOUBLE HELICES,SPHEROMAKS AND RFPS IN ONE SYSTEM

Description: OAK-B135 High magnetic flux is required for thermonuclear FRC reactors and, more immediately, to advance the FRC experimental program in general. Oblate FRCs are of special interest because they are predicted to have certain improved MHD stability over elongated FRCs, and oblate FRCs may yield the most compact, magnetically confined fusion reactors. Neither oblate nor high-flux FRCs have been investigated experimentally to date. Our presently proposed technique is to make two high-flux, oppositely-handed plasmas by a pair of large, external, reversed-field pinch (RFP) sources. The plasmas would propagate as two Taylor-relaxed double-helix plasmas, to an oblate main plasma chamber, where they would relax further to a counter-helicity pair of spheromaks, which would finally merge into a single high-flux FRC. A concept for a new experimental facility, HIFLUX, to make and study high-magnetic-flux oblate Field-Reversed Configuration (FRC) plasmas, is described. Similar principles might also enable high flux non-inductive startup of other plasma devices.
Date: July 1, 2003
Creator: SCHAFFER,MJ & BOEDO,JA
Partner: UNT Libraries Government Documents Department

Onset and Saturation of Ion Heating by Odd-parity Rotating-magnetic-fields in a Field-reversed Configuration

Description: Heating of figure-8 ions by odd-parity rotating magnetic fields (RMFο) applied to an elongated field-reversed configuration (FRC) is investigated. The largest energy gain occurs at resonances (s ≡ ω(sub)R⁄ω) of the RMFο frequency, ω(sub)R, with the figure-8 orbital frequency, ω, and is proportional to s^2 for s – even resonances and to s for s – odd resonances. The threshold for the transition from regular to stochastic orbits explains both the onset and saturation of heating. The FRC magnetic geometry lowers the threshold for heating below that in the tokamak by an order of magnitude.
Date: November 1, 2005
Creator: A.S. Landsman, S.A. Cohen, A.H. Glasser
Partner: UNT Libraries Government Documents Department

FRC formation and trapping by counter injection for MTF liner implosions

Description: A new simplified design is being developed for injecting and trapping Field-Reversed Configurations (FRCs) into liners, which is compatible with the energetic liner implosions of interest for Magnetized Target Fusion (MTF). Conical theta pinches that inject from each end of the liner region are proposed. The conical angle can be chosen to make axial translation out of the conical theta pinch into the liner region occur on approximately the same time scale as radial compression. Thus no crowbar switch is needed for the high-voltage fast-rising current pulse. The toroidal field from conical theta-pinch injection and/or Z-pinch preionization should rapidly annihilate upon merging of the two oppositely directed FRCs. Two dc coils in a Helmholtz-like configuration are all that are needed to serve the functions of cusp, translation, and mirror fields for trapping in the liner. The mirror strength required for trapping is not as critical as when using onesided injection because the merging FRCs have no net momentum when they collide. Previously observed damping of axial kinetic energy suggests that viscous damping parallel to B 'is strong for FRCs with mfp comparable to FRC length, and conversion of directed energy to thermal energy should occur on a time scale comparable to the injection time. The electrical/mechanical details will be described, accompanied by numerical simulations of FRC formation using the MACH2 numerical code.
Date: January 1, 2002
Creator: Siemon, R. E. (Richard E.); Degnan, J. H.; Frese, M. H. & Taccetti, J. M. (Jose Martin)
Partner: UNT Libraries Government Documents Department

Field-Reversed Configuration Formation Scheme Utilizing a Spheromak and Solenoid Induction

Description: A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state.
Date: June 12, 2008
Creator: S.P. Gerhardt, E.V. Belova, M. Yamada, H. Ji, Y. Ren, B. McGeehan, and M. Inomoto
Partner: UNT Libraries Government Documents Department

Evolution of toroidal flow during, after mode locking

Description: The response of the toroidal flow velocity to the abrupt locking of it in the vicinity of a magnetohydrodynamic (MHD) tearing-mode- induced magnetic island is examined analytically and numerically using a diffusive transport model in a cylindrical plasma model. The resultant toroidal momentum confinement is shown to degrade significantly after mode locking, as is often observed on many tokamaks and reversed field pinches (RFPs). The degraded toroidal momentum confinement time in the core and edge regions of the plasma are evaluated and compared to experimental observations, The mode locking time scale itself is also investigated by using a model toroidal torque balance equation. The decrease of mode frequency during mode locking seems to be governed mainly by the electromagnetic torque exerted on the resistive layer. For tokamak plasmas, the mode locking time scale is found to be much shorter than the diffusion time scale, which is in general agreement with experimental observations.
Date: November 1, 1995
Creator: Yokoyama, M.; Callen, J.D. & Hegna, C.C.
Partner: UNT Libraries Government Documents Department

Final report for the field-reversed configuration power plant critical-issue scoping study

Description: This report describes research in which a team from the Universities of Wisconsin, Washington, and Illinois performed a scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis of deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core.
Date: March 1, 2001
Creator: Santarius, John F.; Mogahed, Elsayed A.; Emmert, Gilbert A.; Khater, Hesham Y.; Nguyen, Canh N.; Ryzhkov, Sergei V. et al.
Partner: UNT Libraries Government Documents Department

Kinetic Stability of the Field Reversed Configuration

Description: New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). The FRC is an innovative confinement approach that offers a unique fusion reactor potential because of its compact and simple geometry, translation properties, and high plasma beta. One of the most important issues is FRC stability with respect to low-n (toroidal mode number) MHD modes. There is a clear discrepancy between the predictions of standard MHD theory that many modes should be unstable on the MHD time scale, and the observed macroscopic resilience of FRCs in experiments.
Date: July 9, 2002
Creator: Belova, E.V.; Davidson, R.C.; Ji, H. & Yamada, and M.
Partner: UNT Libraries Government Documents Department

Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

Description: The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.
Date: January 5, 2011
Creator: Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A. & Cohen, S. A.
Partner: UNT Libraries Government Documents Department

Kinetic Effects on the Stability Properties of Field-reversed Configurations: I. Linear Stability

Description: New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). We present results of hybrid and two-fluid (Hall-MHD) simulations of prolate FRCs. The n = 1 tilt instability mechanism and growth rate reduction mechanisms are investigated in detail including resonant particle effects, finite Larmor radius and Hall stabilization, and profile effects. It is shown that the Hall effect determines the mode rotation and the change in the linear mode structure in the kinetic regime; however, the reduction in the growth rate is mostly due to finite Larmor radius effects. Resonant wave-particle interactions are studied as a function of (a) elongation, (b) the kinetic parameter S*, which is proportional to the ratio of the separatrix radius to the thermal ion Larmor radius, and (c) the separatrix shape. It is demonstrated that, contrary to the usually assumed stochasticity of the ion orbits in the FRC, a large fraction of the orbits are regular in long configurations when S* is small. A stochasticity condition is found, and a scaling with the S* parameter is presented. Resonant particle effects are shown to maintain the instability in the large gyroradius regime regardless of the separatrix shape.
Date: January 28, 2003
Creator: Belova, Elena V.; Davidson, Ronald C.; Ji, Hantao & Yamada, Masaaki
Partner: UNT Libraries Government Documents Department

Regular and Stochastic Orbits of Ions in a Highly Prolate Field-reversed Configuration

Description: Ion dynamics in a field-reversed configuration (FRC) are explored for a highly elongated device, with emphasis placed on ions having positive canonical angular momentum. Due to angular invariance, the equations of motion are that of a two degree of freedom system with spatial variables rho and xi. As a result of separation of time scales of motion, caused by large elongation, there is a conserved adiabatic invariant, J(sub)rho, which breaks down during the crossing of the phase-space separatrix. For integrable motion, which conserves J(sub)rho, an approximate one-dimensional effective potential was obtained by averaging over the fast radial motion. This averaged potential has the shape of either a double or single symmetric well centered about xi = 0. The condition for the approach to the separatrix and therefore the breakdown of the adiabatic invariance of J(sub)rho is derived and studied under variation of J(sub)rho and conserved angular momentum, pi(sub)phi. Since repeated violation of J(sub)rho results in chaotic motion, this condition can be used to predict whether an ion (or distribution of ions) with given initial conditions will undergo chaotic motion.
Date: October 9, 2003
Creator: Landsman, A.S.; Cohen, S.A. & Glasser, A.H.
Partner: UNT Libraries Government Documents Department

Nonlinear and Non-ideal Effects on FRC Stability

Description: New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). We present results of hybrid and two-fluid (Hall-MHD) simulations of prolate FRCs in strongly kinetic and small-gyroradius, MHD-like regimes. The n = 1 tilt instability mechanism and stabilizing factors are investigated in detail including nonlinear and resonant particle effects, particle losses along the open field lines, and Hall stabilization. It is shown that the Hall effect determines the mode rotation and change in the linear mode structure in the kinetic regime; however, the reduction in the growth rate is mostly due to the finite Larmor radius effects. Resonant particle effects are important in the large gyroradius regime regardless of the separatrix shape, and even in cases when a large fraction of the particle orbits are stochastic. Particle loss along the open field lines has a destabilizing effect on the tilt mode and contributes to the ion spin up in toroidal direction. The nonlinear evolution of unstable modes in both kinetic and small-gyroradius FRCs is shown to be considerably slower than that in MHD simulations. Our simulation results demonstrate that a combination of kinetic and nonlinear effects is a key for understanding the experimentally observed FRC stability properties.
Date: October 21, 2002
Creator: Belova, E.V.; Davidson, R.C.; Ji, H. & Yamada, M.
Partner: UNT Libraries Government Documents Department

Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration

Description: The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar{copyright} surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics.
Date: April 13, 2005
Creator: Landsman, A.S.; Cohen, S.A.; Edelman, M. & Zaslavsky, G.M.
Partner: UNT Libraries Government Documents Department

Numerical Study of Field-reversed Configurations: The Formation and Ion Spin-up

Description: Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs, and the new FRC formation method by counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good qualitative agreement with results from the SSX-FRC experiment. The simulations show formation of an FRC in about 20-30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects.
Date: June 6, 2005
Creator: Belova, E. V.; Davidson, R. C.; Ji, H.; Yamada, M.; Cothran, C. D.; Brown, M. R. et al.
Partner: UNT Libraries Government Documents Department

Numerical Study of the Formation, Ion Spin-up and Nonlinear Stability Properties of Field-reversed Configurations

Description: Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs and the new FRC formation method by the counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good agreement with results from the SSX-FRC experiment. Simulations show formation of an FRC in about 30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects.
Date: November 12, 2004
Creator: Belova, E.V.; Davidson, R.C.; Ji, H.; Yamada, M.; Cothran, C.D.; Brown, M.R. et al.
Partner: UNT Libraries Government Documents Department

Kinetic Effects on the Stability Properties of Field-reversed Configurations: II. Nonlinear Evolution

Description: Results of three-dimensional hybrid simulations of the field-reversed configuration (FRC) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs. A wide range of ''bar s'' values is considered, where the ''bar s'' is the FRC kinetic parameter, which measures the number of ion gyroradii in the configuration. The linear and nonlinear stability of MHD modes with toroidal mode numbers n greater than or equal to 1 is investigated, including the effects of ion rotation, finite electron pressure, and weak toroidal field. Low-''bar s'' simulations show nonlinear saturation of the n = 1 tilt mode. The n greater than or equal to 2 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to ion spin-up in the toroidal direction. Large-''bar s'' simulations show no saturation of the tilt mode, and there is a slow nonlinear evolution of the instability after the initial fast linear growth. Overall, the hybrid simulations demonstrate the importance of nonlinear effects, which are responsible for the saturation of instabilities in low-''bar s'' configurations, and also for the increase in FRC life-time compared to MHD models in high-''bar s'' configurations.
Date: November 25, 2003
Creator: Belova, Elena V.; Davidson, Ronald C.; Ji, Hantao & Yamada, Masaaki
Partner: UNT Libraries Government Documents Department

Final Technical Report

Description: The nonlinear physics of electron magnetohydrodynamics (EMHD) in plasmas. Time-varying wave magnetic field exceeding the background magnetic field produces highly nonlinear whistler mode since the wave dispersion depends on the total magnetic field. There exists no theory for such whistler modes. The present experimental work is the first one to explore this regime of nonlinear whistlers. A field-reversed configuration has been found which has the same vortex topology as an MHD spheromak, termed a whistler spheromak. Whistler mirrors have compressed and twisted field lines propagating in the whistler mode. Their helicity properties have been studied. Whistler spheromaks and mirrors have different propagation and damping characteristics. Wave collisions have been studied. Head-on collisions of two whistler spheromaks form a stationary field-reversed configuration (FRC) without helicity. When whistler spheromaks are excited the toroidal current flows mainly in the toroidal null line. It is only carried by electrons since ion currents and displacement currents are negligible. A change in the poloidal (axial) magnetic field induces a toroidal electric field which drives the current. Magnetic energy is dissipated and converted into electron kinetic energy. This process is called magnetic reconnection in 2D geometries, which are simplifications for theoretical convenience but rarely occur in nature. A crucial aspect of reconnection is its rate, determined by the electron collisionality. Regular Coulomb collisions can rarely account for the observed reconnection rates. In the present experiments we have also observed fast reconnection and explained it by electron transit time damping in the finite-size null layer. Electrons move faster than a whistler spheromak, hence transit through the toroidal null line where they are freely accelerated. The transit time is essentially the collision time but no particle collisions are required. Strong electron heating and visible light emissions are only observed in whistler spheromaks and FRCs but not in mirrors or ...
Date: September 8, 2009
Creator: Stenzel, Reiner & Urrutia, J. Manuel
Partner: UNT Libraries Government Documents Department

Stochastic Ion Heating in a Field-reversed Configuration Geometry by Rotating Magnetic Fields

Description: Ion heating by application of rotating magnetic fields (RMF) to a prolate field-reversed configuration(FRC) is explored by analytical and numerical techniques. For odd-parity RMF (RMFo), perturbation analysis shows ions in figure-8 orbits gain energy at resonances of the RMFo frequency, ωR, with the figure-8 orbital frequency, ω. Since figure-8 orbits tend to gain the most energy from the RMF and are unlikely to escape in the cusp region (where most losses occur), they are optimal candidates for rapid stochastic heating, as compared to cyclotron and betatron orbits. Comparisons are made between heating caused by even- and odd-parity RMFs and between heating in currently operating and in reactor-scale FRC devices.
Date: June 25, 2007
Creator: S.A. Cohen, A.S. Landsman, and A.H. Glasser
Partner: UNT Libraries Government Documents Department

Field-Reversed Configuration Power Plant Critical-Issue Scoping Study

Description: A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, good thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.
Date: March 31, 2000
Creator: Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.; Khater, H. Y.; Nguyen, C. N.; Ryzhkov, S. V. et al.
Partner: UNT Libraries Government Documents Department

Ion Rings for Magnetic Fusion

Description: This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose ...
Date: July 31, 2005
Creator: Greenly, John, B.
Partner: UNT Libraries Government Documents Department

Non-local kinetic transport studies of a field-reversed configuration

Description: One of the positive results that came from the work in this period was the development of a series of codes for solving the 2-D equilibrium FRC problem under various basic physics assumptions. The derivation of the models used to determine an FRC equilibrium was presented in the previous annual report, which is to be submitted to Physics of Fluids. The derivation is not repeated in this section; rather, some examples of what has been learned using these codes are presented. To date, the codes have been useful in four essential areas. First, it was shown that passive mirrors present in the early operation of the LSM device were interacting strongly with the plasma. This caused the inference of some key quantities to be inaccurate. Second, profiles have been found that can exist in the plasma and could cause the present inference of the field null resistivity to be significantly in error. Third, it has become possible to examine rotational effects in the FRC equilibrium from the standpoint of modification of both equilibrium and stability properties. Fourth, it has made possible a realistic study of the MHD stability of the system.
Date: January 1, 1989
Creator: Choi, Chan K.
Partner: UNT Libraries Government Documents Department

Non-local kinetic transport studies of a field reversed configuration

Description: During this past period a computer code was developed to determine the global kinetic linear stability for a 1-D Field-Reversed Configuration (FRC). This report will describe the physical assumptions used to model the plasma, the equations solved by the code, the numerical analysis for certain aspects of the code, and some preliminary results from the code.
Date: January 1, 1990
Creator: Choi, Chan K.
Partner: UNT Libraries Government Documents Department