423 Matching Results

Search Results

Advanced search parameters have been applied.

Bibliography of geothermal reports in Colorado. Bulletin 44

Description: This bibliography comprises all known published and unpublished public reports pertaining to the geothermal resources of Colorado through 1980. The report is in two alphabetical sections, BIBLIOGRAPHY and SUBJECT INDEX. The Bibliography section is a listing of the various authors with key works, while the Subject Index section is a listing of the various authors by subject.
Date: January 1, 1981
Creator: Pearl, R.H.; Zacharakis, T.G.; Repplier, F.N. & McCarthy, K.P.
Partner: UNT Libraries Government Documents Department

Revised heat flow map of Colorado

Description: This present map of Colorado is a revision of the heat flow map published by Pearl and others in 1976. The heat flow values were gathered from previously published reports. The parameters necessary to compute the heat flow values are described. Regionally, Colorado is separated into three heat flow provinces. They are: the Great Plains, the Southern Rocky Mountains, and the Colorado Plateau provinces. The Great Plains province, except for the Raton Basin and Canon City Embayment, indicates normal heat flow. The Southern Rocky Mountain province which encompasses both the Rio Grande Rift and an anomalous zone located near Ouray are the most promising areas for high heat flow. The Colorado Plateau province is considered normal to slightly above normal compared with the regional heat flow of the United States.
Date: January 1, 1981
Creator: Zacharakis, T.G.
Partner: UNT Libraries Government Documents Department

Results of a detailed gravity survey in the Alamosa Area, Alamosa County, Colorado

Description: A total of 322 stations, centered on the City of Alamosa, were surveyed with a gravimeter during September 1981. These data have shown the Alamosa horst to have an irregular top. This irregularity is thought to be caused by paleovalleys and/or down-dropped fault blocks within the Precambrian horst. The City of Alamosa lies directly over a local gravity low. Volcanic rocks within this low may contain a reservoir for geothermal fluids, as yet unsubstantiated by drilling. Thermal fluids are thought to enter the Alamosa area via aquifers from the west (San Juan Mountains) and/or from the Rio Grande Rift zone with the fluids rising along fractures within and bordering the horst. The most favorable drilling targets appear to be either near the center of the local gravity low or in the fracture zone at the edges of the inferred down-dropped fault blocks.
Date: September 1, 1983
Creator: Mackelprang, C.E.
Partner: UNT Libraries Government Documents Department

Chemical analyses of selected thermal springs and wells in Wyoming

Description: Basic chemical data for 27 selected thermal well and springs in Wyoming are presented. The samples were gathered from 1979 through 1982 in an effort to define geothermal resources in Wyoming. The basic data for the 27 analyzed samples generally include location, temperature, flow, date analyzed, and a description of what the sample is from. The chemical analyses for the sample are listed.
Date: June 1, 1984
Creator: Heasler, H.P.
Partner: UNT Libraries Government Documents Department

Reconnaissance of the hydrothermal resources of Utah

Description: Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.
Date: January 1, 1983
Creator: Rush, F.E.
Partner: UNT Libraries Government Documents Department

Annotated geothermal bibliography of Utah

Description: The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.
Date: January 1, 1986
Creator: Budding, K.E. & Bugden, M.H. (comps.)
Partner: UNT Libraries Government Documents Department

Hanna, Wyoming underground coal gasification data base. Volume 4. Hanna II, Phases II and III field test research report

Description: This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phases II and III, were conducted during the winter of 1975 and the summer of 1976. The two phases refer to linking and gasification operations conducted between two adjacent well pairs as shown in Figure 1 with Phase II denoting operations between Wells 5 and 6 and Phase III operations between Wells 7 and 8. All of the other wells shown were instrumentation wells. Wells 7 and 8 were linked in November and December 1975. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 16 refs., 21 figs., 17 tabs.
Date: August 1, 1985
Creator: Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M. & Humphrey, A.E.
Partner: UNT Libraries Government Documents Department

Hanna, Wyoming underground coal gasification data base. Volume 3. The Hanna II, Phase I field test

Description: This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phase I was conducted during the spring and summer of 1975, at a site about 700 feet up dip (to the southwest) of the Hanna I test. The test was conducted in two stages - Phase IA and IB. Phase IA consisted of linking and gasification operations between Wells 1 and 3 and Phase IB of linking from the 1-3 gasification zone to Well 2, followed by a short period of gasification from Well 2 to Well 3 over a broad range of air injection rates, in order to determine system turndown capabilities and response times. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operational testing; (5) test operations summary; and (6) post-test activity. 7 refs., 11 figs., 8 tabs.
Date: August 1, 1985
Creator: Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M. & Humphrey, A.E.
Partner: UNT Libraries Government Documents Department

Geothermal gradient map of Colorado

Description: Reported bottom hole temperatures (BHT) were taken from 12,000 oil and gas wells provided by the Colorado Oil and Gas Conservation Commission files. Average annual surface temperatures were subtracted from the BHT and then divided by the depth to give a gradient. To eliminate as many sources of error as possible, the gradient values were averaged for each township and contoured.
Date: January 1, 1981
Creator: Repplier, F.N. & Fargo, R.L.
Partner: UNT Libraries Government Documents Department

Historic, enthnohistoric and prehistoric cultural resource inventory. Final technical report, November 1980-May 1982

Description: The goal of this study is to provide a literature search and write a historical narrative of the cultural significance of the study area for the proposed WyCoalGas Inc., pipeline, railroad, well fields, and coal gasification plant. The request for a cultural resource investigation states at a minimum the study shall be a literature search on the narrow one mile corridor along the proposed pipelines, areas included within the various facilities plus a one mile buffer surrounding these facilities. In addition, the study must be tied into appropriate local, state, and national history. The writer of this history has felt a responsibility for providing a realistic assessment of the themes of the study area's historical development. Several ideas have been concentrated upon: its American Indian heritage; the Euro-American's exploitive relationship with the region; and the overriding fragile, arid nature of its land. It is hoped that the government agencies and ultimately the energy company will feel a similiar responsibility toward the study area's historical integrity.
Date: January 1, 1982
Partner: UNT Libraries Government Documents Department

Montana: basic data for thermal springs and wells as recorded in GEOTHERM

Description: GEOTHERM sample file contains 225 records for Montana. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Montana. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.
Date: July 1, 1983
Creator: Bliss, J.D.
Partner: UNT Libraries Government Documents Department

Multiwell experiment: Overview

Description: This field laboratory has been established about 7 mi southwest of Rifle, Colorado. Here the Mesaverde formation lies at a depth of 4000 to 8250 ft. This interval contains different, distinct reservoir types depending upon their depositional environments. These different zones serve as the focus of the various testing and stimulation programs. One key to the Multiwell Experiment is three closely spaced wells. Their 110 to 215 ft separation at depth is less than the nominal dimensions of the lenses in the area. Core, log, well testing, and well-to-well seismic data are providing a far better definition of the geological setting than has been available previously. Comprehensive logging and core analysis programs were conducted. The closely spaced wells also allow interference and tracer tests to obtain in situ reservoir parameters. The vertical variation of in situ stress throughout the intervals of interest is being measured. A series of stimulation experiments is being conducted in one well and the other two wells are being used as observation wells for improved fracture diagnostics and well testing. Another key to achieving the Multiwell Experiment objectives is the synergism resulting from a broad spectrum of activities: geophysical surveys, sedimentological studies, core and log analyses, well testing, in situ stress determination, stimulation, fracture diagnostics, and reservoir analyses. The results from the various activities will define the reservoir and the hydraulic fracture. These, in turn, define the net pay stimulated: the intersection of a hydraulic fracture of known geometry with a reservoir of known morphology and properties. These definitions are further enhanced by the fact that most data will come from closely spaced wells. Thus, spatial variations in reservoir properties can be quantified. 10 refs.
Date: January 1, 1987
Creator: Lorenz, J.C.; Sattler, A.R.; Warpinski, N.R.; Thorne, B.J. & Branagan, P.T.
Partner: UNT Libraries Government Documents Department

Drilling report: State Nursery test well No. 1

Description: A geothermal test well was sited and drilled approximately 0.8 miles (1.3 km) east of Broadwater Hot Springs, near Helena, Montana. The site is on the property of the State Nursery, along the north side of Ten Mile Creek. The purpose of the drilling was to test a thermal infrared imagery anomaly and to evaluate whether a source of warm water for space heating of a series of new greenhouses could be developed to replace ones destroyed in the spring 1981 flooding of Ten Mile Creek. The well was drilled to 280 feet total depth, with no success in obtaining hot or even warm water.
Date: August 27, 1982
Creator: Donovan, J. & Sonderegger, J.
Partner: UNT Libraries Government Documents Department

Thermopolis hydrothermal system with an analysis of Hot Springs State Park

Description: Thermopolis is the site of Hot Springs State Park, where numerous hot springs produce nearly 3000 gallons per minute (gpm) of 130/sup 0/F (54/sup 0/C) water. The University of Wyoming Geothermal Resource Assessment Group has studied a 1700-square-mile area centered roughly on the State Park. Available literature, bottom-hole temperatures from over 400 oil well logs, 62 oil field drill stem tests, the Wyoming State Engineer's water well files, 60 formation water analyses, thermal logs of 19 holes, and field investigations of geology and hydrology form the basis of this report.
Date: January 1, 1982
Creator: Hinckley, B.S.; Heasler, H.P. & King, J.K.
Partner: UNT Libraries Government Documents Department

Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part I. Gravity survey

Description: During 1980 and 1981 a total of 569 new gravity stations were taken in Utah and Goshen Valleys and adjacent areas, Utah. The new stations were combined with 530 other gravity stations taken in previous surveys which resulted in a compilation of 1099 stations which were used in this study. The additional surveys were undertaken to assist in the evaluation of the area for the possible development of geothermal resources by providing an interpreted structural framework by delineating faults, structural trends, intrusions, thickness of valley fill, and increased density of host rock. The gravity data are presented as (1) a complete Bouguer gravity anomaly map with a 2 mgal contour interval on a scale of 1:100,000 and (2) five generally east-trending gravity profiles. A geologic interpretation of the study area was made from the gravity map and from the interpretive geologic cross sections which were modeled along the gravity profiles.
Date: April 1, 1983
Creator: Davis, D.A. & Cook, K.L.
Partner: UNT Libraries Government Documents Department

Hanna, Wyoming underground coal gasification data base. Volume 6. Hanna IVA and IVB field test research report

Description: This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. The reports in this series include: The Hanna IV test was designed as the first underground coal gasification test using commercial well spacings of 100 and 150 feet between well pairs in a linear 3-well pattern. The test was initiated in late 1977 and completed in late 1979. This long duration was due to unfavorable geologic conditions (faulting) which could not be successfully overcome resulting in the test being split into Hanna IVA and Hanna IVB with about one year between the conduct of each. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facility description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 5 refs., 19 figs., 13 tabs.
Date: August 1, 1985
Creator: Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M. & Humphrey, A.E.
Partner: UNT Libraries Government Documents Department

Colorado: basic data for thermal springs and wells as recorded in GEOTHERM

Description: GEOTHERM sample file contains 225 records for Colorado. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Colorado. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.
Date: May 1, 1983
Creator: Bliss, J.D.
Partner: UNT Libraries Government Documents Department

Principal facts for gravity stations of the Broadwater geothermal area, Montana

Description: Two complete Bouguer anomaly values were calculated for each of the 67 stations assuming average rock densities of 2.67 g/cm/sup 3/ and 2.45 g/cm/sup 3/. The corrections and anomaly values are listed. A hand contoured Bouguer gravity map is included.
Date: January 1, 1981
Creator: Bankey, V.; Paton, J. & Kleinkopf, M.D.
Partner: UNT Libraries Government Documents Department

Assessing impacts of oil-shale development on the Piceance Basin mule deer herd

Description: Development of energy resources on big game ranges generally negatively impacts these important wildlife resources. Although habitat disturbance is generally important, this impact is overshadowed by the negative impacts due to an increasing human population in the area. Increased human activities particularly stress animals during winter periods when inadequate nutrition levels may have already severely impacted the population. Increased road traffic and poaching causes additional deaths, which a decline in survival rates expected, or at least changes in the cause of mortality. This paper describes the experimental design to monitor and mitigate the impact of oil shale development in northwestern Colorado on the Piceance Basin mule deer herd. Biotelemetry techniques are used to measure changes through time in movements, habitat utilization, and survival rates between control and treatment areas. 2 figures.
Date: January 1, 1983
Creator: White, G.C. & Garrott, R.A.
Partner: UNT Libraries Government Documents Department

Participation in the Creede Scientific Drilling Project as on-site Principal Investigator

Description: Scientific questions addressed by the Creede Scientific Drilling Project were as follows (Bethke et al., 1992): (1) Did the lacustrine sedimentary sequence filling the moat of Creede caldera serve as reservoir for the moderately-saline aqueous fluids which scavenged and then transported silver and base metals to ore-depositional sites for the rich epithermal deposits of the Creede mining district (Fig. 1) ; (2) what were the chemical and isotopic compositions of these fluids prior to their entry into the Creede fracture (later vein) system; (3) how did these chemical and isotopic compositions evolve in transit to the ore-depositional site ; (4) how did the Creede caldera form and evolve ; (5) what is the present thermal regime in Creede caldera moat [hor ellipsis]the, paleothermal regime ; (5) what are the hydrologic transport properties of the moat sedimentary rocks ; (6) what diagenetic or hydrothermal veins disrupt the moat sedimentary sequence, and what do their paragenetic relationships, mineralogic compositions, fluid-inclusion characteristics, and stable-isotope systematics reveal about evolution of the Creede hydrothermal system Two Creede caldera moat drill holes were completed for this project.
Date: June 1, 1992
Creator: Hulen, J.B.
Partner: UNT Libraries Government Documents Department