183 Matching Results

Search Results

Advanced search parameters have been applied.

Low-speckle holographic beam shaping of high-coherence EUV sources

Description: This paper describes a method to arbitrarily shape and homogenize high-coherence extreme ultraviolet sources using time-varying holographic optical elements and a scanning subsystem to mitigate speckle. In systems with integration times longer than 100 ms, a speckle contrast below 1% can be achieved.
Date: August 1, 2010
Creator: Anderson, Christopher N.; Miyakawa, Ryan H. & Naulleau, Patrick
Partner: UNT Libraries Government Documents Department

SEMATECH EUV resist benchmarking results

Description: Extreme Ultraviolet Lithography (EUVL) is one of the leading candidates for next generation lithography technology for the 32 nm HP and beyond. The availability of EUV resists is one of the most significant challenges facing its commercialization. To accelerate EUV resist development, SEMATECH provides access to two exposure tools: (1) The EUV Resist Test Center (RTC) at SEMATECH at the University at Albany, SUNY, NY; and (2) the SEMATECH microexposure tools (ALS-MET) at Lawrence Berkeley National Laboratory (LBNL).
Date: October 27, 2007
Creator: Ma, Andy; Park, Joo-On; Dean, Kim; Wurm, Stefan & Naulleau, Patrick
Partner: UNT Libraries Government Documents Department

A high-throughput contact-hole resolution metric for photoresists:Full-process sensitivity study

Description: The ability to accurately quantify the intrinsic resolution of chemically amplified photoresists is critical for the optimization of resists for extreme ultraviolet (EUV) Iithography. We have recently reported on two resolution metrics that have been shown to extract resolution numbers consistent with direct observation. In this paper we examine the previously reported contact-hole resolution metric and explore the sensitivity of the metric to potential error sources associated with the experimental side of the resolution extraction process. For EUV exposures at the SEMATECH Berkeley microfield exposure tool, we report a full-process error-bar in extracted resolution of 1.75 nm RMS and verify this result experimentally.
Date: January 22, 2008
Creator: Anderson, Christopher N. & Naulleau, Patrick P.
Partner: UNT Libraries Government Documents Department

Deprotection blue in extreme ultraviolet photoresists: influence of base loading and post-exposure bake temperture

Description: The deprotection blur of Rohm and Haas XP 5435, XP 5271, and XP5496 extreme ultraviolet photoresists has been determined as their base weight percent is varied. They have also determined the deprotection blur of TOK EUVR P1123 photoresist as the post-exposure bake temperature is varied from 80 C to 120 C. In Rohm and Haas XP 5435 and XP5271 resists 7x and 3x (respective) increases in base weight percent reduce the size of successfully patterned 1:1 line-space features by 16 nm and 8 nm with corresponding reductions in deprotection blur of 7 nm and 4 nm. In XP 5496 a 7x increase in base weight percent reduces the size of successfully patterned 1:1 line-space features from 48 nm to 38 nm without changing deprotection blur. In TOK EUVR P1123 resist, a reduction in post-exposure bake temperature from 100 C to 80 C reduces deprotection blur from 21 nm to 10 nm and reduces patterned LER from 4.8 nm to 4.1 nm.
Date: June 2, 2008
Creator: Anderson, Christopher N. & Naulleau, Patrick P.
Partner: UNT Libraries Government Documents Department

Extreme ultraviolet lithography: A few more pieces of the puzzle

Description: The work described in this dissertation has improved three essential components of extreme ultraviolet (EUV) lithography: exposure tools, photoresist, and metrology. Exposure tools. A field-averaging illumination stage is presented that enables nonuniform, high-coherence sources to be used in applications where highly uniform illumination is required. In an EUV implementation, it is shown that the illuminator achieves a 6.5% peak-to-valley intensity variation across the entire design field of view. In addition, a design for a stand-alone EUV printing tool capable of delivering 15 nm half-pitch sinusoidal fringes with available sources, gratings and nano-positioning stages is presented. It is shown that the proposed design delivers a near zero line-edge-rougness (LER) aerial image, something extremely attractive for the application of resist testing. Photoresist. Two new methods of quantifying the deprotection blur of EUV photoresists are described and experimentally demonstrated. The deprotection blur, LER, and sensitivity parameters of several EUV photoresists are quantified simultaneously as base weight percent, photoacid generator (PAG) weight percent, and post-exposure bake (PEB) temperature are varied. Two surprising results are found: (1) changing base weight percent does not significantly affect the deprotection blur of EUV photoresist, and (2) increasing PAG weight percent can simultaneously reduce LER and E-size in EUV photoresist. The latter result motivates the development of an EUV exposure statistics model that includes the effects of photon shot noise, the PAG spatial distribution, and the changing of the PAG distribution during the exposure. In addition, a shot noise + deprotection blur model is used to show that as deprotection blur becomes large relative to the size of the printed feature, LER reduction from improved counting statistics becomes dominated by an increase in LER due to reduced deprotection contrast. Metrology. Finally, this dissertation describes MOSAIC, a new wavefront metrology that enables complete wavefront recovery from print or aerial image ...
Date: May 20, 2009
Creator: Anderson, Christopher N.
Partner: UNT Libraries Government Documents Department

Validity of the thin mask approximation in extreme ultraviolet mask roughness simulations

Description: In the case of extreme ultraviolet (EUV) lithography, modeling has shown that reflector phase roughness on the lithographic mask is a significant concern due to the image plan speckle it causes and the resulting line-edge roughness on imaged features. Modeling results have recently been used to determine the requirements for future production worthy masks yielding the extremely stringent specification of 50 pm rms roughness. Owing to the scale of the problem in terms of memory requirements, past modeling results have all been based on the thin mask approximation. EUV masks, however, are inherently three dimensional in nature and thus the question arises as to the validity of the thin mask approximation. Here we directly compare image plane speckle calculation results using the fast two dimensional thin mask model to rigorous finite-difference time-domain results and find the two methods to be comparable.
Date: January 26, 2011
Creator: Naulleau, Patrick & George, Simi
Partner: UNT Libraries Government Documents Department

Actinic characterization of EUV bump-type phase defects

Description: Despite tremendous progress and learning with EUV lithography, quantitative experimental information about the severity of point-like phase defects remains in short supply. We present a study of measured, EUV aerial images from a series of well-characterized, open-field, bump-type programmed phase defects, created on a substrate before multilayer deposition.
Date: January 10, 2011
Creator: Goldberg, Kenneth A.; Mochi, Iacopo & Liang, Ted
Partner: UNT Libraries Government Documents Department

Extreme Ultraviolet Lithography for 0.1 {micro}m Devices

Description: Extreme Ultraviolet Lithography (EUVL) has emerged as one of the leading successors to optics for 0.1 {micro}m IC fabrication. Its strongest attribute is the potential to scale to much finer resolution at high throughput. As such, this technique could meet the lithography needs for Si ULSI down to fundamental device limits. In the US, Lawrence Livermore, Sandia, and Lawrence Berkeley National Laboratories are participating in an industry funded research effort to evolve EUV technology and build a prototype camera for lithographic exposure. More recently, both Europe and Japan have initiated government/industry sponsored programs in EUVL development. This talk will focus on our program successes to date, and highlight some of the challenges that still lie ahead.
Date: July 7, 1999
Creator: Vaidya, S.; Sweeney, D.W.; Stulen, R. & Attwood, D.
Partner: UNT Libraries Government Documents Department

Masks for extreme ultraviolet lithography

Description: In extreme ultraviolet lithography (EUVL), the technology specific requirements on the mask are a direct consequence of the utilization of radiation in the spectral region between 10 and 15 nm. At these wavelengths, all condensed materials are highly absorbing and efficient radiation transport mandates the use of all-reflective optical systems. Reflectivity is achieved with resonant, wavelength-matched multilayer (ML) coatings on all of the optical surfaces - including the mask. The EUV mask has a unique architecture - it consists of a substrate with a highly reflective ML coating (the mask blank) that is subsequently over-coated with a patterned absorber layer (the mask). Particulate contamination on the EUVL mask surface, errors in absorber definition and defects in the ML coating all have the potential to print in the lithographic process. While highly developed technologies exist for repair of the absorber layer, no viable strategy for the repair of ML coating defects has been identified. In this paper the state-of-the-art in ML deposition technology, optical inspection of EUVL mask blank defects and candidate absorber patterning approaches are reviewed.
Date: September 1, 1998
Creator: Cardinale, G; Goldsmith, J; Kearney, P A; Larson, C; Moore, C E; Prisbrey, S et al.
Partner: UNT Libraries Government Documents Department

Detectability and printability of EUVL mask blank defects for the32 nm HP node

Description: The readiness of a defect-free extreme ultraviolet lithography (EUVL) mask blank infrastructure is one of the main enablers for the insertion of EUVL technology into production. It is essential to have sufficient defect detection capability and understanding of defect printability to develop a defect-free EUVL mask blank infrastructure. The SEMATECH Mask Blank Development Center (MBDC) has been developing EUVL mask blanks with low defect densities with the Lasertec M1350 and M7360, the 1st and 2nd generations, respectively, of visible light EUVL mask blank inspection tools. Although the M7360 represents a significant improvement in our defect detection capability, it is time to start developing a 3rd generation tool for EUVL mask blank inspection. The goal of this tool is to detect all printable defects; therefore, understanding defect printability criteria is critical to this tool development. In this paper, we will investigate the defect detectability of a 2nd generation blank inspection tool and a patterned EUVL mask inspection tool. We will also compare the ability of the inspection tools to detect programmed defects whose printability has been estimated from wafer printing results and actinic aerial images results.
Date: August 1, 2007
Creator: Cho, Wonil; Han, Hak-Seung; Goldberg, Kenneth A.; Kearney,Patrick A. & Jeon, Chan-Uk
Partner: UNT Libraries Government Documents Department

Extreme Ultraviolet Phase Contrast Imaging

Description: The conclusions of this report are: (1) zone plate microscopy provides high resolution imaging of EUV masks; (2) using phase plates in the back focal plane of the objective lens can provide contrast mechanisms for measurement of the phase shift from defects on the mask; (3) the first high resolution EUV Zernike phase contrast images have been acquired; and (4) future work will include phase contrast mode in reflection from an EUV mask to directly measure the reflectivity and phase shift from defects.
Date: November 1, 2005
Creator: Denbeaux, Gregory; Garg, Rashi; Aquila, Andy; Barty, Anton; Goldberg, Kenneth; Gullikson, Eric et al.
Partner: UNT Libraries Government Documents Department

Growth and Printability of Multilayer Phase Defects on EUV MaskBlanks

Description: The ability to fabricate defect-free mask blanks is a well-recognized challenge in enabling extreme ultraviolet lithography (EUVL) for semiconductor manufacturing. Both the specification and reduction of defects necessitate the understanding of their printability and how they are generated and grow during Mo-Si multilayer (ML) deposition. A ML phase defect can be depicted by its topographical profile on the surface as either a bump or pit, which is then characterized by height or depth and width. The complexity of such seemingly simple phase defects lies in the many ways they can be generated and the difficulties of measuring their physical shape/size and optical effects on printability. An effective way to study phase defects is to use a programmed defect mask (PDM) as 'model' test sample where the defects are produced with controlled growth on a ML blank and accurate placement in varying proximity to absorber patterns on the mask. This paper describes our recent study of ML phase defect printability with resist data from exposures of a ML PDM on the EUV micro-exposure tool (MET, 5X reduction with 0.3NA).
Date: June 10, 2007
Creator: Liang, Ted; Ultanir, Erdem; Zhnag, Guojing; Park, Seh-Jin; Anderson, Erik; Gullikson, Eric et al.
Partner: UNT Libraries Government Documents Department

EUV Resists: Illuminating the challenges

Description: As extreme ultraviolet (EUV) lithography enters the commercialization phase with potential introduction at the 3x nm half-pitch node in 2013, the attention of advanced EUV resist research has turned to addressing patterning at 16-nm half pitch and below. Whereas line-edge roughness is the primary concern at 2x half pitch and larger, research at the 16-nm half pitch level is uncovering broader.
Date: June 1, 2011
Creator: Naulleau, Patrick; Anderson, Christopher & George, Simi
Partner: UNT Libraries Government Documents Department

Recent results from the Berkeley 0.3-NA microfield exposure tool

Description: Operating as a SEMATECH resist test center, the Berkeley 0.3-NA EUV microfield exposure tool continues to play a crucial role in the advancement of EUV resists and masks. Here we present recent resist-characterization results from the tool as well as tool-characterization data. In particular we present lithographic-based aberration measurements demonstrating the long-term stability of the tool. We also describe a recent upgrade to the tool which involved redesign of the programmable coherence illuminator to provide improved field uniformity as well as a programmable field size.
Date: March 1, 2007
Creator: Naulleau, Patrick; Anderson, Christopher N.; Dean, Kim; Denham, Paul; Goldberg, Kenneth A.; Hoef, Brian et al.
Partner: UNT Libraries Government Documents Department

EUV/soft x-ray spectra for low B neutron stars

Description: Recent ROSAT and EUVE detections of spin-powered neutron stars suggest that many emit ``thermal`` radiation, peaking in the EUV/soft X-ray band. These data constrain the neutron stars` thermal history, but interpretation requires comparison with model atmosphere computations, since emergent spectra depend strongly on the surface composition and magnetic field. As recent opacity computations show substantial change to absorption cross sections at neutron star photospheric conditions, we report here on new model atmosphere computations employing such data. The results are compared with magnetic atmosphere models and applied to PSR J0437-4715, a low field neutron star.
Date: May 23, 1995
Creator: Romani, R.W.; Rajagopal, M.; Rogers, F.J. & Iglesias, C.A.
Partner: UNT Libraries Government Documents Department

Multilayer reflective coatings for extreme-ultraviolet lithography

Description: Multilayer mirror coatings which reflect extreme ultraviolet (EUV) radiation are a key enabling technology for EUV lithography. Mo/Si multilayers with reflectances of 67.5% at 13.4 nm are now routinely achieved and reflectances of 70 2% at 11.4 nm were obtained with MO/Be multilayers. High reflectance is achieved with careful control of substrate quality, layer thicknesses, multilayer materials, interface quality, and surface termination. Reflectance and film stress were found to be stable relative to the requirements for application to EUV lithography. The run-to-run reproducibility of the reflectance peak position was characterized to be better than 0.2%, providing the required wavelength matching among the seven multilayer-coated mirrors used in the present lithography system design. Uniformity of coating was improved to better than 0.5% across 150 mm diameter substrates. These improvements in EUV multilayer mirror technology will enable us to meet the stringent specifications for coating the large optical substrates for our next-generation EUV lithography system.
Date: March 10, 1998
Creator: Montcalm, C., LLNL
Partner: UNT Libraries Government Documents Department

Fabrication and testing of optics for EUV projection lithography

Description: Extreme Ultraviolet Lithography (EUVL) is a leading candidate as a stepper technology for fabricating the ``0.1 {micro}m generation`` of microelectronic circuits. EUVL is an optical printing technique qualitatively similar to Deep UV Lithography (DUVL), except that 11-13nm wavelength light is used instead of 193-248nm. The feasibility of creating 0.l{micro}m features has been well-established using small-field EWL printing tools, and development efforts are currently underway to demonstrate that cost-effective production equipment can be engineered to perform full-width ring-field imaging consistent with high wafer throughput rates. Ensuring that an industrial supplier base will be available for key components and subsystems is crucial to the success of EUVL. In particular, the projection optics are the heart of the EUVL imaging system, yet they have figure and finish specifications that are beyond the state-of-the-art in optics manufacturing. Thus it is important to demonstrate that industry will be able to fabricate and certify these optics commensurate with EUVL requirements. The goal of this paper is to demonstrate that procuring EUVL projection optical substrates is feasible. This conclusion is based on measurements of both commercially-available and developmental substrates.
Date: March 13, 1998
Creator: Taylor, J. S.
Partner: UNT Libraries Government Documents Department

Quarterly Report for High NA Optics Development: Q3-1999 International Sematech Project LITH 112

Description: This quarterly report provides a status update for each of the milestones for the International Sematech project on the development of high-NA optics for a small-field EUVL exposure tool. The optical design has been completed, which employs two aspheric mirrors yielding diffraction-limited imaging within a 600 {micro}m x 200 {micro}m field with a numerical aperture of 0.3 and a 5x reduction. Preliminary aerial image calculations show good resolution of 30nm features with partially coherent illumination. Contracts have been awarded for the fabrication and multilayer coating of the mirror elements and a detailed specification package has been generated for one of the mirror substrates (M1). Metrology instrumentation is being assembled and fabrication has been initiated on M1. Key progress includes the design and fabrication of kinematic mounting fixtures that enable the vendor to perform interferometry in a geometry compatible with PO Box fixturing. The first substrate is proceeding according to schedule, with delivery expected in December 1999.
Date: October 8, 1999
Creator: Taylor, J.S.
Partner: UNT Libraries Government Documents Department

Detecting EUV transients in near real time with ALEXIS

Description: The Array of Low Energy X-ray Imaging Sensors (ALEXIS) experiment consists of a mini-satellite containing six wide angle EUV/ultrasoft X-ray telescopes (Priedhorsky et al. 1989, and Bloch et al. 1994). Its scientific objective is to map out the sky in three narrow ({Delta}E/E {approx} 5%) bandpasses around 66, 71, and 93 eV. During each 50 second satellite rotation period the six telescopes, each with a 30{degrees} field, of:view and a spatial resolution of 0.25{degrees}, scan most of the antisolar hemisphere of the sky. The project is a collaborative effort between Los Alamos National Laboratory, Sandia National Laboratory, and the University of California-Berkeley Space Sciences Laboratory. It is controlled entirely from a small ground station located at Los Alamos. The mission was launched on a Pegasus Air Launched Vehicle on April 25, 1993. An incident at launch delayed our ability to properly analyze the data until November of 1994. In January of 1995, we brought on line automated software to routinely carry out the transient search. After the data is downlinked from the satellite, the software processes and transforms it into sky maps that are automatically searched for new sources. The software then sends the results of these searches by e-mail to the science team within two hours of the downlink. This system has successfully detected the Cataclysmic Variables VW Hyi, U Gem and AR UMa in outburst, and has detected at least two unidentified short duration EUV transients (Roussel-Dupre et al 1995, Roussel-Dupre 1995).
Date: December 31, 1995
Creator: Roussel-Dupre`, D.; Bloch, J.J.; Theiler, J.; Pfafman, T. & Beauchesne, B.
Partner: UNT Libraries Government Documents Department