5 Matching Results

Search Results

Advanced search parameters have been applied.

Physics Opportunities of a Fixed-Target Experiment using the LHC Beams

Description: We outline the many physics opportunities offered by a multi-purpose fixed-target experiment using the proton and lead-ion beams of the LHC extracted by a bent crystal. In a proton run with the LHC 7-TeV beam, one can analyze pp, pd and pA collisions at center-of-mass energy {radical}s{sub NN} {approx_equal} 115 GeV and even higher using the Fermi motion of the nucleons in a nuclear target. In a lead run with a 2.76 TeV-per-nucleon beam, {radical}s{sub NN} is as high as 72 GeV. Bent crystals can be used to extract about 5 x 10{sup 8} protons/sec; the integrated luminosity over a year reaches 0.5 fb{sup -1} on a typical 1 cm-long target without nuclear species limitation. We emphasize that such an extraction mode does not alter the performance of the collider experiments at the LHC. By instrumenting the target-rapidity region, gluon and heavy-quark distributions of the proton and the neutron can be accessed at large x and even at x larger than unity in the nuclear case. Single diffractive physics and, for the first time, the large negative-xF domain can be accessed. The nuclear target-species versatility provides a unique opportunity to study nuclear matter versus the features of the hot and dense matter formed in heavy-ion collisions, including the formation of the quark-gluon plasma, which can be studied in PbA collisions over the full range of target-rapidity domain with a large variety of nuclei. The polarization of hydrogen and nuclear targets allows an ambitious spin program, including measurements of the QCD lensing effects which underlie the Sivers single-spin asymmetry, the study of transversity distributions and possibly of polarized parton distributions. We also emphasize the potential offered by pA ultra-peripheral collisions where the nucleus target A is used as a coherent photon source, mimicking photoproduction processes in ep collisions. Finally, we note ...
Date: March 16, 2012
Creator: Brodsky, S.J.; /SLAC; Fleuret, F.; Polytechnique, /Ecole; Hadjidakis, C.; Lansberg, J.P. et al.
Partner: UNT Libraries Government Documents Department