820 Matching Results

Search Results

Advanced search parameters have been applied.

Spheromak Physics Development

Description: The spheromak is a Magnetic Fusion Energy (MFE) configuration, which is a leading alternative to the tokamak. It has a simple geometry which offers an opportunity to achieve the promise of fusion energy if the physics of confinement, current drive, and pressure holding capability extrapolate favorably to a reactor. Recent changes in the US MFE program, taken in response to budget constraints and programmatic directions from Congress, include a revitalization of an experimental alternative concept effort. Detailed studies of the spheromak were consequently undertaken to examine the major physics issues which need to be resolved to advance it as a fusion plasma, the optimum configuration for an advanced experiment, and its potential as a reactor. As a result of this study, we conclude that it is important to evaluate several physics issues experimentally. Such an experiment might be appropriately be named the Sustained Spheromak Physics Experiment (SSPX). It would address several critical issues, the solution to which will provide the physics basis to enable an advanced experiment. The specific scientific goals of SSPX would be to: * Demonstrate that electron and ion temperatures of a few hundred electron volts can be achieved in a steady-state spheromak plasma sustained by a magnetic dynamo (``helicity injection``). * Relate energy confinement quantitatively to the magnetic turbulence accompanying the dynamo and use this knowledge to optimize performance. * Measure the magnetic field profiles and magnetic turbulence in the plasma and relate these to the science of the magnetic dynamo which drives the current in the plasma. * Examine experimentally the pressure holding capability (``beta limit``) of the spheromak. * Understand the initial phases of the transition of the plasma from an equilibrium supported by a magnetic-flux conserving wall to one supported by external coils. These goals could be achieved in an experiment with duration ...
Date: January 27, 1997
Creator: Hooper, E.B.
Partner: UNT Libraries Government Documents Department

Neutron-antineutron transition search at HFIR Reactor

Description: A new experiment to search for neutron-antineutron transitions was recently proposed for High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). In this paper the physics motivation of a new search, the scheme and the discovery potential of the proposed HFIR-based experiment are discussed.
Date: August 1, 1997
Creator: Kamyshkov, Y.A.
Partner: UNT Libraries Government Documents Department

The Snowmass points and slopes : benchmarks for SUSY searches.

Description: The ''Snowmass Points and Slopes'' (SPS) are a set of benchmark points and parameter lines in the MSSM parameter space corresponding to different scenarios in the search for Supersymmetry at present and future experiments. This set of benchmarks was agreed upon at the 2001 ''Snowmass Workshop on the Future of Particle Physics'' as a consensus based on different existing proposals.
Date: April 15, 2002
Creator: Allanach, B. C.; Battaglia, M.; Blair, G. A.; Carena, M.; De Roeck, A. & Wagner, C. E. M.
Partner: UNT Libraries Government Documents Department

Scoping the parameter space for demo and the engineering test facility (ETF)

Description: In our IFE development plan, we have set a goal of building an Engineering Test Facility (ETF) for a total cost of $2B and a Demo for $3B. In Mike Campbell� s presentation at Madison, we included a viewgraph with an example Demo that had 80 to � 250 MWe of net power and showed a plausible argument that it could cost less than $3B. In this memo, I examine the design space for the Demo and then briefly for the ETF. Instead of attempting to estimate the costs of the drivers, I pose the question in a way to define R&D goals: As a function of key design and performance parameters, how much can the driver cost if the total facility cost is limited to the specified goal? The design parameters examined for the Demo included target gain, driver energy, driver efficiency, and net power output. For the ETF; the design parameters are target gain, driver energy, and target yield. The resulting graphs of allowable driver cost determine the goals that the driver R&D programs must seek to meet.
Date: January 19, 1999
Creator: Meier, W. R.
Partner: UNT Libraries Government Documents Department

Physics research needs for ITER

Description: Design of ITER entails the application of physics design tools that have been validated against the world-wide data base of fusion research. In many cases, these tools do not yet exist and must be developed as part of the ITER physics program. ITER`s considerable increases in power and size demand significant extrapolations from the current data base; in several cases, new physical effects are projected to dominate the behavior of the ITER plasma. This paper focuses on those design tools and data that have been identified by the ITER team and are not yet available; these needs serve as the basis for the ITER Physics Research Needs, which have been developed jointly by the ITER Physics Expert Groups and the ITER design team. Development of the tools and the supporting data base is an on-going activity that constitutes a significant opportunity for contributions to the ITER program by fusion research programs world-wide.
Date: July 1, 1995
Creator: Sauthoff, N.R.
Partner: UNT Libraries Government Documents Department

Antiquark distributions in the proton

Description: This is the final report of a three-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The study of quark and antiquark distributions in the nucleon has been a major endeavor in nuclear and particle physics. Results from a recent deep-inelastic scattering experiment suggest the surprising possibility that the up and down antiquark distributions in the proton are not symmetric. A sensitive and direct determination of the antiquark distributions in the proton can be made by comparing the Drell-Yan cross sections on hydrogen versus deuterium targets. The authors have proposed a new experiment (E866) at Fermilab to carry out such measurements. E866 has been taking data since September 1996. Preliminary results show that the apparatus is working very well. The authors anticipate having seven months of beam in 1997, which would allow them to achieve the sensitivities for a definitive measurement of flavor symmetry of sea quarks in the proton.
Date: July 1, 1997
Creator: Brooks, M.; Carey, T. & Garvey, G.
Partner: UNT Libraries Government Documents Department

Updated DIII-D experimental plan for FY-1989

Description: The program proposed here is designed to support and build toward the long-term plan put forward during 1987 for the DIII-D facility. This plan has as its ultimate goal developing sufficient understanding and predictive capability to enable the demonstration of a high beta plasma with non-inductively driven toroidal current. The early stages of this plan call for the optimization of the plasma configuration for good confinement at high beta while simultaneously developing the need rf power systems for current drive, profile control, and heating.
Date: August 1, 1989
Creator: Luxon, J.L.
Partner: UNT Libraries Government Documents Department

Application of a high-density gas laser target to the physics of x-ray lasers and coronal plasmas

Description: An experiment has been proposed to investigate a photopumped x-ray laser approach using a novel, high-density, laser heated supersonic gas jet plasma to prepare the lasant plasma. The scheme uses the He- like sodium 1.10027 nm line to pump the He-like neon 1s-4p transition at 1.10003 nm with the lasing transitions between the n=4 to n=2,3 states and the n=3 to n=2 state at 5.8 nm, 23.0 nm, and 8.2 nm, respectively. The experiment had been proposed in 1990 and funding began Jan. 1991; however circumstances made it impossible to pursue the research over the past 5 years, and it was decided not to pursue the research any further.
Date: May 31, 1996
Creator: Pronko, J.G. & Kohler, D.
Partner: UNT Libraries Government Documents Department

DIII-D experimental plan for FY-1989

Description: This document summarizes the Experimental Plan for the DIII-D tokamak facility for the fiscal year 1989. The long-range DIII-D 5 yr plan is directed ultimately at the goal of achieving good confinement at high beta in a plasma with non-inductively driven current. This is important to the design of a steady-state reactor. This program may be thought of as occurring in two phases. In the first phase of the program we axe separately investigating high beta plasma confinement in inductively-driven plasmas, and non-inductive current drive. In the second phase we will combine these two elements to investigate high beta plasma confinement with non-inductive current drive. The FY 89 plan continues the first phase of the DIII-D experimental effort that contains a strong focus on beta and confinement in non-circular plasma configurations and in the divertor configuration in particular. Important work also continues in the development of rf heating systems for heating, profile control, and current drive. This research is coupled to theoretical efforts at General Atomics. The FY 89 research program outlined herein is diverse and multifaceted. However, it is also characterized by a greater synthesis of techniques toward a common goal. An example is the application of ECH for sawtooth suppression that would improve the low q confinement and allow higher {beta} to be obtained. We believe this research program will provide a solid foundation for the continued development of the tokamak toward high beta steady-state reactor application. The DIII-D FY 89 research program will provide results that will help resolve many CIT and ITER Physics R&D issues. In addition, DIII-D confinement studies will be an important input to the newly formed National Transport Task Force.
Date: November 1, 1988
Creator: Luxon, J.L.
Partner: UNT Libraries Government Documents Department

Affordable Near-term Burning-plasma Experiments

Description: Fusion energy is a potential energy source for the future with plentiful fuel supplies and is expected to have benign environmental impact. The issue with fusion energy has been the scientific feasibility, and recently the cost of this approach. The key technical milestone for fusion is the achievement of a self-sustained fusion fire, ignition, in the laboratory. Despite 40 years of research and the expenditure of almost $20B worldwide, a self-sustained fusion fire has not yet been produced in the laboratory. The fusion program needs a test bed, preferably more than one, where the dynamics of a burning plasma can be studied, optimized and understood so that the engineering requirements for an engineering test reactor can be determined. Engineering and physics concepts must be developed within the next decade that will lead to an Affordable Burning Plasma Experiment if fusion is going to be perceived as making progress toward a potential long-range energy source.
Date: April 1, 1998
Creator: Meade, D.M. & Wooley, R.D.
Partner: UNT Libraries Government Documents Department

{mu}{sup +} {yields} e{sup +}{gamma} and related rare decays

Description: The connection of rare decays to supersymmetric grand unification is highlighted, and a brief review of the status of rare decay experiments is given. The status of the MEGA experiment, a search for {mu}{sup +} {yields} e{sup +}{gamma}, is reported. Some ideas for a new experimental arrangement that has the potential to reach a sensitivity of 10{sup {minus}14} are presented.
Date: February 1, 1997
Creator: Cooper, M.D.
Partner: UNT Libraries Government Documents Department

Design status of the NLC beam-delivery system and possible future studies

Description: The authors outline some highlights in the present design of the beam-delivery and removal system for the Next Linear Collider (NLC), and present a long list of possible or desirable future studies. On several of the listed items work has already been started since the Snowmass workshop. Other studies could be conducted, for example, in the framework of a conceptual design report (CDR).
Date: October 1, 1996
Creator: Zimmermann, F.; Bowden, G. & Burke, D.
Partner: UNT Libraries Government Documents Department

High velocity impact experiment (HVIE)

Description: The HVIE space project was conceived as a way to measure the absolute EOS for approximately 10 materials at pressures up to {approximately}30 Mb with order-of-magnitude higher accuracy than obtainable in any comparable experiment conducted on earth. The experiment configuration is such that each of the 10 materials interacts with all of the others thereby producing one-hundred independent, simultaneous EOS experiments The materials will be selected to provide critical information to weapons designers, National Ignition Facility target designers and planetary and geophysical scientists. In addition, HVIE will provide important scientific information to other communities, including the Ballistic Missile Defense Organization and the lethality and vulnerability community. The basic HVIE concept is to place two probes in counter rotating, highly elliptical orbits and collide them at high velocity (20 km/s) at 100 km altitude above the earth. The low altitude of the experiment will provide quick debris strip-out of orbit due to atmospheric drag. The preliminary conceptual evaluation of the HVIE has found no show stoppers. The design has been very easy to keep within the lift capabilities of commonly available rides to low earth orbit including the space shuttle. The cost of approximately 69 million dollars for 100 EOS experiment that will yield the much needed high accuracy, absolute measurement data is a bargain!
Date: February 1, 1998
Creator: Toor, A.; Donich, T. & Carter, P.
Partner: UNT Libraries Government Documents Department

Preliminary thoughts on the Aladdin experiments

Description: The author suggests three sets of experiments for comparing tracking results with experimental data on the dynamic aperture in Aladdin. They are: (1) aperture determined by a single dominant resonance; (2) dominance by a group of intersecting resonances; and (3) many non-intersecting resonances. Note that one advantage of the suggested experiments is that one can inject, accelerate, and get set for the experiment, and then excite the driving terms slowly, watching the aperture.
Date: November 1, 1987
Creator: Symon, K.
Partner: UNT Libraries Government Documents Department

The advanced neutron source research and development plan

Description: The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 {center_dot} 10{sup 19} {center_dot} m{sup -2} {center_dot} s{sup -1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R&D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R&D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R&D program will focus on the four objectives described.
Date: August 1, 1995
Creator: Selby, D.L.
Partner: UNT Libraries Government Documents Department

Oak Ridge National Laboratory Institutional Plan, FY 1997--FY 2002

Description: Three major initiatives are described, which are proposed to strengthen ORNL`s ability to support the missions of the Department: neutron science, functional genomics, and distributed computing at teraflop speeds. The laboratory missions, strategic plan, scientific and technical programs, enterprise activities, laboratory operations, and resource projections are also described.
Date: October 1996
Partner: UNT Libraries Government Documents Department