158 Matching Results

Search Results

Advanced search parameters have been applied.

External-stream effects on gross thrust and pumping characteristics of ejectors operating at off-design Mach numbers

Description: Report presenting an investigation in the 8- by 6-foot supersonic tunnel to determine the external-stream effects on the gross thrust and pumping characteristics of ejectors operating at off-design Mach numbers. Results regarding the pumping, thrust, and base characteristics, boattail drag characteristics, and stream effects on jet thrust for typical ejector installations are provided.
Date: June 26, 1956
Creator: Valerino, Alfred S. & Yeager, Richard A.
Partner: UNT Libraries Government Documents Department

XTOD to Conventional Facilities Interface Control Document

Description: This document describes the interface between the LCLS X-ray Transport and Diagnostics (XTOD) (WBS 1.5) and the LCLS Conventional Facilities (CF) (WBS 1.1). The interface locations ranging from the beam dump to the far experimental hall are identified. Conventional Facilities provides x-ray, beamline and equipment enclosures, mounting surfaces, conventional utilities, compressed (clean, dry) air, process and purge gases, exhaust systems, power, and environmental conditions for the XTOD components and controls.
Date: September 29, 2005
Creator: McMahon, D
Partner: UNT Libraries Government Documents Department

ATP for the portable 500 CFM exhauster POR-005 skid C

Description: This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-005 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results.
Date: June 27, 1997
Creator: Keller, C.M.
Partner: UNT Libraries Government Documents Department

ATP for the portable 500 CFM exhauster POR-006 skid D

Description: This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-006 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results.
Date: July 29, 1997
Creator: Keller, C.M.
Partner: UNT Libraries Government Documents Department

System acceptance and operability test report for the RMCS exhauster C on flammable gas tanks

Description: This test report documents the completion of acceptance and operability testing of the rotary mode core sampling (RMCS) exhauster C, as modified for use as a major stack (as defined by the Washington State Department of Health) on flammable gas tanks.
Date: March 11, 1998
Creator: Waldo, E.J.
Partner: UNT Libraries Government Documents Department

DOE 6430.1a compliance checklist for the rotary mode core sampling exhauster flammable gas interlock

Description: This document examines the Safety Class I criteria in DOE 6430.1a and determines applicability to the rotary mode core sampling exhauster flammable gas interlock. Purpose of the interlock is to prevent the design basis accident of deflagration in single shell flammable gas watchlist tank.
Date: September 1, 1995
Creator: Robinson, J.D.
Partner: UNT Libraries Government Documents Department

Support and control system of the Waste Isolation Pilot Plant gas generation experiment glovebox

Description: A glovebox was designed and fabricated to house test containers loaded with contact handled transuranic (CH-TRU) waste. The test containers were designed to simulate the environmental characteristics of the caverns at the Waste Isolation Pilot Plant (WIPP). The support and control systems used to operate and maintain the Gas Generation Experiment (GGE) include the following: glovebox atmosphere and pressure control, test container support, glovebox operation support, and gas supply and exhaust systems. The glovebox atmosphere and pressure control systems consist of various components used to control both the pressure and quality of the argon atmosphere inside the glovebox. The glovebox pressure is maintained by three separate pressure control systems. The primary pressure control system is designed to maintain the glovebox at a negative pressure with the other two control systems serving as redundant safety backups. The quality of the argon atmosphere is controlled using a purifying bed system that removes oxygen and moisture. Glovebox atmosphere contaminants that are monitored on a continuous or periodic basis include moisture, oxygen, and nitrogen. The gas generation experiment requires the test containers to be filled with brine, leak tested, maintained at a constant temperature, and the gas head space of the test container sampled on a periodic basis. Test container support systems consisting of a brine addition system, leak test system, heating system, and gas sampling system were designed and implemented. A rupture disk system was constructed to provide pressure relief to the test containers. Operational requirements stipulated that test container temperature and pressure be monitored and collected on a continuous basis. A data acquisition system (DAS) was specifically designed to meet these requirements.
Date: September 1, 1997
Creator: Benjamin, W.W.; Knight, C.J.; Michelbacher, J.A. & Rosenberg, K.E.
Partner: UNT Libraries Government Documents Department

Tank farm stack NESHAP designation determinations. Revision 2

Description: This document provides a determination of the status of Tank Farm Exhausters as regulated by the ``National Emission Standards for Hazardous Air Pollutants`` (NESHAP) specified in the 40 Series Code of Federal Regulations (CFRs), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides other than Radon from Department of Energy Facilities.``
Date: January 18, 1996
Creator: Crummel, G. M.
Partner: UNT Libraries Government Documents Department

Nonradioactive Air Emissions Notice of Construction use on a portable exhauster on 241-A-101 tank during salt well pumping

Description: The 241-A-101 tank, a 22.9 meter 3,785,400 liter capacity SST, was constructed from the fourth generation of tank designs, which were capable of holding boiling or self-concentrating waste. Construction features a reinforced concrete shell, dome, and base with a mild steel liner covering the bottom and sidewalls. The tank has a flat bottom with a usable waste depth of approximately 9.4 meters. The tank was put into service in 1956 to store plutonium-uranium extraction (PUREX) high-level waste and organic wash waste. The waste was allowed to self-concentrate up until 1968. Tank sluicing was performed in 1969 and again in 1976 to reduce the amount of strontium and cesium, the two isotopes found to be the main heat generating sources in the tank. In 1978, the tank was reassigned for saltcake storage. The tank was taken out of service in November 1980 and partially isolated in 1982. Salt well pumping is a method used to interim stabilize SSTS. Interim stabilization is commenced once all the liquid above the solids has been removed (primary stabilization). Interim stabilization removes the gravity drainable liquid and the interstitial liquid between the solids from the SST and transfers the liquid to a double-shell tank (DST) or to a staging double-contained receiver tank (DCRT), which is subsequently transferred to a DST. Pumping is accomplished at very low flow rates, 15.1 liters per minute or less. Normally, salt well pumping is performed without the need of an exhauster. However, recent safety evaluations concluded that a minimum exhaust flow rate of 7.1 cubic meters per minute would be required to enhance the safety of the tank. Therefore, active ventilation will be part of this process for the 241-A-101 tank. This document details the Nonradioactive Air Emissions Notice of Construction for the use of a portable exhauster on Tank 241-A-101 ...
Date: April 17, 1996
Creator: Hays, C.B.
Partner: UNT Libraries Government Documents Department

Heavy Vehicle Propulsion Materials Program: Progress and Highlights

Description: The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given.
Date: June 19, 2000
Creator: Johnson, D. Ray & Diamond, Sidney
Partner: UNT Libraries Government Documents Department

Strength and fatigue of NT551 silicon nitride and NT551 diesel exhaust valves

Description: The content of this report is excerpted from Mark Andrew's Ph.D. Thesis (Andrews, 1999), which was funded by a DOE/OTT High Temperature Materials Laboratory Graduate Fellowship. It involves the characterization of NT551 and valves fabricated with it. The motivations behind using silicon nitride (Si{sub 3}N{sub 4}) as an exhaust valve for a diesel engine are presented in this section. There are several economic factors that have encouraged the design and implementation of ceramic components for internal combustion (IC) engines. The reasons for selecting the diesel engine valve for this are also presented.
Date: February 1, 2000
Creator: Andrews, M.J.; Werezczak, A.A.; Kirkland, T.P. & Breder, K.
Partner: UNT Libraries Government Documents Department

Divertor particle exhaust and wall inventory on DIII-D

Description: Many tokamaks achieve optimum plasma performance by achieving low recycling; various wall conditioning techniques including helium glow discharge cleaning (HeGDC) are routinely applied to help achieve low recycling. Many of these techniques allow strong, transient wall pumping, but they may not be effective for long-pulse tokamaks, such as the International Thermonuclear Experimental Reactor (ITER), the Tokamak Physics Experiment (TPX), Tore Supra Continu, and JT-60SU. Continuous particle exhaust using an in-situ pumping scheme may be effective for wall inventory control in such devices. Recent particle balance experiments on the Tore Supra and DIII-D tokamaks demonstrated that the wall particle inventory could be reduced during a given discharge by use of continuous particle exhaust. In this paper we report the first results of wall inventory control and good performance with the in-situ DIII-D cryopump, replacing the HeGDC normally applied between discharges.
Date: June 1, 1995
Creator: Maingi, R.; Wade, M.R. & Mioduszewski, P.K.
Partner: UNT Libraries Government Documents Department

Going Where No Man Can Go

Description: This paper discusses the successful remote visual inspection of a contaminated air exhaust tunnel running beneath the Savannah River Site's H-Canyon nuclear material separations facility. The air exhaust tunnel has been in operation since the 1950's, and the portion of the tunnel inspected has not been seen or accessed since startup. Numerous challenges were overcome in the deployment of the vehicle, including an initial 10-ft drop, travelling a long distance through harsh environmental conditions, surviving and recovering from a second vertical drop, turning 90 degrees, and subsequently travelling further. Video of the entire inspection was transmitted back to a control station, and the vehicle was abandoned in place for possible future use.
Date: February 5, 2004
Creator: Robinson, C.W.
Partner: UNT Libraries Government Documents Department

Energy Impact of Residential Ventilation Norms in the UnitedStates

Description: The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.
Date: February 1, 2007
Creator: Sherman, Max H. & Walker, Iain S.
Partner: UNT Libraries Government Documents Department

Assessment of the 3430 Building Filtered Exhaust Stack Sampling Probe Location

Description: Pacific Northwest National Laboratory performed a demonstration to determine the acceptable location in which to place an air sampling probe for emissions monitoring for radionuclides in the exhaust air discharge from the new 3430 Building Filtered Exhaust Stack. The method was to adopt the results of a previously performed test series for a system of similar configuration, followed by a partial test on the actual system to verify the applicability of previously performed tests. The qualification criteria included 1) a uniform air velocity, 2) an average flow angle that does not deviate from the axis of the duct by more than 20°, 3) a uniform concentration of tracer gases, and 4) a uniform concentration of tracer particles. Section 1 provides background information for the demonstration, and Section 2 describes the test strategy, including the criteria for the applicability of model results and the test matrix. Section 3 describes the flow -angle test and the velocity uniformity test, Section 4 provides the test results, and Section 5 provides the conclusions. Appendix A includes the test data sheets, and Appendix B gives applicable qualification results from the previously tested model stack. The data from the previously tested and similarly designed stack was demonstrated to be applicable to the current design for the 3430 Building Filtered Exhaust Stack. The 3430 stack was tested in both January and May of 2010 to document the results of several changes that were made to the exhaust system after the January tests. The 3430 stack meets the qualification criteria given in the American National Standards Institute/Health Physics Society N13.1 standard. Changes to the system configuration or operations outside of the bounds of this report (e.g., exhaust velocity increases, relocation of sample probe) will require retesting/reevaluation to determine compliancewith the requirements.
Date: July 16, 2010
Creator: Glissmeyer, John A. & Flaherty, Julia E.
Partner: UNT Libraries Government Documents Department

Commissioning Ventilated Containment Systems in the Laboratory

Description: This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.
Date: August 1, 2008
Partner: UNT Libraries Government Documents Department

Ultra-high tritium decontamination of simulated fusion fuel exhaust using a 2-stage palladium membrane reactor

Description: A 2-stage cold (non-tritium) PMR system was tested with the ITER mix in61 days of continuous operation. No decrease in performance was observed over the duration of the test. Decontamination factor (DF) was found to increase with decreasing inlet rate. Decontamination factors in excess of 1.4 {times} 10{sup 5} were obtained, but the exact value of the highest DF could not be determined because of analysis limitations. Results of the 61-day test were used to design a 2-stage PMR system for use in tritium testing. The PMR system was scaled up by a factor of 6 and built into a glovebox in the Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory. This system is approximately 1/5th of the expected full ITER scale. The ITER mix was injected into the PMR system for 31 hours, during which 4.5 g of tritium were processed. The 1st stage had DF = 200 and the 2nd stage had DF = 2.9 {times} 10{sup 6}. The overall DF = 5.8 {times} 10{sup 8}, which is greater than ITER requirements.
Date: December 1996
Creator: Birdsell, S. A.; Willms, R. S. & Wilhelm, R. C.
Partner: UNT Libraries Government Documents Department

Portable exhauster POR-007/Skid E and POR-008/Skid F storage plan

Description: This document provides storage requirements for 1,000 CFM portable exhausters POR-O07/Skid E and POR-008/Skid F. These requirements are presented in three parts: preparation for storage, storage maintenance and testing, and retrieval from storage. The exhauster component identification numbers listed in this document contain the prefix POR-007 or POR-008 depending on which exhauster is being used.
Date: July 25, 1998
Creator: Nelson, O.D.
Partner: UNT Libraries Government Documents Department