27 Matching Results

Search Results

Advanced search parameters have been applied.

8-oxoguainine enhances bending of DNA that favors binding of glycosylases

Description: Molecular dynamics (MD) simulations were carried out on the DNA oligonucleotide GGGAACAACTAG:CTAGTTGTTCCC in its native form and with guanine in the central G19:C6 base pair replaced by 8-oxoguanine (8oxoG). A box of explicit water molecules was used for solvation and Na+ counterions were added to neutralize the system. The direction and magnitude of global bending were assessed by a technique used previously to analyze simulations of DNA containing a thymine dimer. The presence of 8oxoG did not greatly affect the magnitude of DNA bending; however, bending into the major groove was significantly more probable when 8oxoG replaced G19. Crystal structures of glycosylases bound to damaged-DNA substrates consistently show a sharp bend into the major groove at the damage site. We conclude that changes in bending dynamics that assist the formation of this kink are a part of the mechanism by which glycosylases of the base excision repair pathway recognize the presence of 8oxoG in DNA.
Date: April 23, 2003
Creator: Miller, John H.
Partner: UNT Libraries Government Documents Department


Description: Radiation can damage cellular components, including DNA. Organisms have developed a panoply of means of dealing with DNA damage. Some repair paths have rather narrow substrate specificity (e.g. photolyases), which act on specific pyrimidine photoproducts in a specific type (e.g., DNA) and conformation (double-stranded B conformation) of nucleic acid. Others, for example, nucleotide excision repair, deal with larger classes of damages, in this case bulky adducts in DNA. A detailed discussion of DNA repair mechanisms is beyond the scope of this article, but one can be found in the excellent book of Friedberg et al. [1] for further detail. However, some DNA damages and paths for repair of those damages important for photobiology will be outlined below as a basis for the specific examples of genetic and molecular analysis that will be presented below.
Date: July 26, 2001
Creator: Sutherland, B. M.
Partner: UNT Libraries Government Documents Department

Metal inhibition of human alkylpurine-DNA-N-glycosylase activityin base excision repair

Description: Cadmium (Cd{sup 2+}), nickel (Ni{sup 2+}) and cobalt (Co{sup 2+}) are human and/or animal carcinogens. Zinc (Zn{sup 2+}) is not categorized as a carcinogen, and rather an essential element to humans. Metals were recently shown to inhibit DNA repair proteins that use metals for their function and/or structure. Here we report that the divalent ions Cd{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} can inhibit the activity of a recombinant human N-methylpurine-DNA glycosylase (MPG) toward a deoxyoligonucleotide with ethenoadenine (var epsilonA). MPG removes a variety of toxic/mutagenic alkylated bases and does not require metal for its catalytic activity or structural integrity. At concentrations starting from 50 to 1000 {micro}M, both Cd{sup 2+} and Zn{sup 2+} showed metal-dependent inhibition of the MPG catalytic activity. Ni{sup 2+} also inhibited MPG, but to a lesser extent. Such an effect can be reversed with EDTA addition. In contrast, Co{sup 2+} and Mg{sup 2+} did not inhibit the MPG activity in the same dose range. Experiments using HeLa cell-free extracts demonstrated similar patterns of inactivation of the var epsilonA excision activity by the same metals. Binding of MPG to the substrate was not significantly affected by Cd{sup 2+}, Zn{sup 2+}, and Ni{sup 2+} at concentrations that show strong inhibition of the catalytic function, suggesting that the reduced catalytic activity is not due to altered MPG binding affinity to the substrate. Molecular dynamics (MD) simulations with Zn{sup 2+} showed that the MPG active site has a potential binding site for Zn{sup 2+}, formed by several catalytically important and conserved residues. Metal binding to such a site is expected to interfere with the catalytic mechanism of this protein. These data suggest that inhibition of MPG activity may contribute to metal genotoxicity and depressed repair of alkylation damage by metals in vivo.
Date: February 28, 2006
Creator: Wang, Ping; Guliaev, Anton B. & Hang, Bo
Partner: UNT Libraries Government Documents Department

A prospective study of XRCC1 haplotypes and their interaction with plasma carotenoids on breast cancer risk

Description: The XRCC1 protein is involved in the base excision repair pathway through interactions with other proteins. Polymorphisms in the XRCC1 gene may lead to variation in repair proficiency and confer inherited predisposition to cancer. We prospectively assessed the associations between polymorphisms and haplotypes in XRCC1 and breast cancer risk in a nested case-control study within the Nurses' Health Study (incident cases, n 1004; controls, n 1385). We further investigated gene-environment interactions between the XRCC1 variations and plasma carotenoids on breast cancer risk. We genotyped four haplotype-tagging single nucleotide polymorphisms Arg {sup 194}Trp, C26602T, Arg{sup 399}Gln, and Gln{sup 632}Gln in the XRCC1 gene. Five common haplotypes accounted for 99% of the chromosomes in the present study population of mostly Caucasian women. We observed a marginally significant reduction in the risk of breast cancer among {sup 194}Trp carriers. As compared with no-carriers, women with at least one {sup 194}Trp allele had a multivariate odds ratio of 0.79 (95% of the confidence interval, 0.60 -1.04). The inferred haplotype harboring the {sup 194}Trp allele was more common in controls than in cases (6.6 versus 5.3%, P 0.07). We observed that the Arg {sup 194}Trp modified the inverse associations of plasma -carotene level (P, ordinal test for interaction 0.02) and plasma -carotene level (P, ordinal test for interaction 0.003) with breast cancer risk. No suggestion of an interaction was observed between the Arg {sup 194}Trp and cigarette smoking. Our results suggest an inverse association between XRCC1 {sup 194}Trp allele and breast cancer risk. The findings of the effect modification of the Arg {sup 194}Trp on the relations of plasma -and -carotene levels with breast cancer risk suggest a potential protective effect of carotenoids in breast carcinogenesis by preventing oxidative DNA damage.
Date: January 15, 2004
Creator: Mohrenweiser, H W; Han, J; Hankinson, S E; De Vivo, I; Spiegelman, D; Tamimi, R M et al.
Partner: UNT Libraries Government Documents Department

Benzene-derived N2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA

Description: Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.
Date: June 14, 2010
Creator: Hang, Bo; Rodriguez, Ben; Yang, Yanu; Guliaev, Anton B. & Chenna, Ahmed
Partner: UNT Libraries Government Documents Department

Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis

Description: Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.
Date: September 24, 2002
Creator: Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep; Menissier-de Murcia, Josiane; de Murcia, Gilbert; Li, Gloria C. et al.
Partner: UNT Libraries Government Documents Department

Final Report on Grant DE-FG-02ER63350

Description: Research funded by grant DE-FG-02ER63350 focused on DNA bending measured NMR spectroscopy and modeled by classical molecular dynamics (MD) simulation. Bending is a structural aspect of DNA that is plays a key role in its function. The most important finding of our research was that oxidation of guanine, a ubiquitous DNA lesion caused by endogenous and environmental oxidative stress, changes DNA bending dynamics in a way that favors binding of glycosylases, repair enzymes that remove damaged bases from DNA. Hence, the effect of 8-oxoguanine on DNA bending contributes to its recognition and removal by the base excision repair system.
Date: June 10, 2005
Creator: Miller, John H.
Partner: UNT Libraries Government Documents Department

Final report [DNA Repair and Mutagenesis - 1999]

Description: The meeting, titled ''DNA Repair and Mutagenesis: Mechanism, Control, and Biological Consequences'', was designed to bring together the various sub-disciplines that collectively comprise the field of DNA Repair and Mutagenesis. The keynote address was titled ''Mutability Doth Play Her Cruel Sports to Many Men's Decay: Variations on the Theme of Translesion Synthesis.'' Sessions were held on the following themes: Excision repair of DNA damage; Transcription and DNA excision repair; UmuC/DinB/Rev1/Rad30 superfamily of DNA polymerases; Cellular responses to DNA damage, checkpoints, and damage tolerance; Repair of mismatched bases, mutation; Genome-instability, and hypermutation; Repair of strand breaks; Replicational fidelity, and Late-breaking developments; Repair and mutation in challenging environments; and Defects in DNA repair: consequences for human disease and aging.
Date: May 30, 2001
Creator: Walker, Graham C.
Partner: UNT Libraries Government Documents Department

Oxidative DNA damage background estimated by a system model of base excision repair

Description: Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.
Date: May 13, 2004
Creator: Sokhansanj, B A & Wilson, III, D M
Partner: UNT Libraries Government Documents Department

DNA repair: Dynamic defenders against cancer and aging

Description: You probably weren't thinking about your body's cellular DNA repair systems the last time you sat on the beach in the bright sunshine. Fortunately, however, while you were subjecting your DNA to the harmful effects of ultraviolet light, your cells were busy repairing the damage. The idea that our genetic material could be damaged by the sun was not appreciated in the early days of molecular biology. When Watson and Crick discovered the structure of DNA in 1953 [1], it was assumed that DNA is fundamentally stable since it carries the blueprint of life. However, over 50 years of research have revealed that our DNA is under constant assault by sunlight, oxygen, radiation, various chemicals, and even our own cellular processes. Cleverly, evolution has provided our cells with a diverse set of tools to repair the damage that Mother Nature causes. DNA repair processes restore the normal nucleotide sequence and DNA structure of the genome after damage [2]. These responses are highly varied and exquisitely regulated. DNA repair mechanisms are traditionally characterized by the type of damage repaired. A large variety of chemical modifications can alter normal DNA bases and either lead to mutations or block transcription if not repaired, and three distinct pathways exist to remove base damage. Base excision repair (BER) corrects DNA base alterations that do not distort the overall structure of the DNA helix such as bases damaged by oxidation resulting from normal cellular metabolism. While BER removes single damaged bases, nucleotide excision repair (NER) removes short segments of nucleotides (called oligonucleotides) containing damaged bases. NER responds to any alteration that distorts the DNA helix and is the mechanism responsible for repairing bulky base damage caused by carcinogenic chemicals such as benzo [a]pyrene (found in cigarette smoke and automobile exhaust) as well as covalent linkages between ...
Date: April 1, 2006
Creator: Fuss, Jill O. & Cooper, Priscilla K.
Partner: UNT Libraries Government Documents Department

Exploration of methods to identify polymorphisms associated with variation in DNA repair capacity phenotypes

Description: Elucidating the relationship between polymorphic sequences and risk of common disease is a challenge. For example, although it is clear that variation in DNA repair genes is associated with familial cancer, aging and neurological disease, progress toward identifying polymorphisms associated with elevated risk of sporadic disease has been slow. This is partly due to the complexity of the genetic variation, the existence of large numbers of mostly low frequency variants and the contribution of many genes to variation in susceptibility. There has been limited development of methods to find associations between genotypes having many polymorphisms and pathway function or health outcome. We have explored several statistical methods for identifying polymorphisms associated with variation in DNA repair phenotypes. The model system used was 80 cell lines that had been resequenced to identify variation; 191 single nucleotide substitution polymorphisms (SNPs) are included, of which 172 are in 31 base excision repair pathway genes, 19 in 5 anti-oxidation genes, and DNA repair phenotypes based on single strand breaks measured by the alkaline Comet assay. Univariate analyses were of limited value in identifying SNPs associated with phenotype variation. Of the multivariable model selection methods tested: the easiest that provided reduced error of prediction of phenotype was simple counting of the variant alleles predicted to encode proteins with reduced activity, which led to a genotype including 52 SNPs; the best and most parsimonious model was achieved using a two-step analysis without regard to potential functional relevance: first SNPs were ranked by importance determined by Random Forests Regression (RFR), followed by cross-validation in a second round of RFR modeling that included ever more SNPs in declining order of importance. With this approach 6 SNPs were found to minimize prediction error. The results should encourage research into utilization of multivariate analytical methods for epidemiological studies of the ...
Date: July 3, 2006
Creator: Jones, I M; Thomas, C B; Xi, T; Mohrenweiser, H W & Nelson, D O
Partner: UNT Libraries Government Documents Department

Biomolecular Simulation of Base Excision Repair and Protein Signaling

Description: The goal of the Biomolecular Simulation of Base Excision Repair and Protein Signaling project is to enhance our understanding of the mechanism of human polymerase-, one of the key enzymes in base excision repair (BER) and the cell-signaling enzymes cyclic-AMP-dependent protein kinase. This work used molecular modeling and simulation studies to specifically focus on the • dynamics of DNA and damaged DNA • dynamics and energetics of base flipping in DNA • mechanism and fidelity of nucleotide insertion by BER enzyme human polymerase-β • mechanism and inhibitor design for cyclic-AMP-dependent protein kinase. Molecular dynamics simulations and electronic structure calculations have been performed using the computer resources at the Molecular Science Computing Facility at the Environmental Molecular Sciences Laboratory.
Date: March 3, 2006
Creator: Straatsma, TP; McCammon, J. A.; Miller, John H.; Smith, Paul E.; Vorpagel, Erich R.; Wong, Chung F. et al.
Partner: UNT Libraries Government Documents Department

Structure/Function Analysis of DNA-glycosylases That Repair Oxidized Purines and Pyrimidines and the Influence of Surrounding DNA Sequence on Their Interactions

Description: The overall goal of this project was to elucidate the structure/function relationships between oxidized DNA bases and the DNA repair enzymes that recognize and remove them. The NMR solution structure of formamidopyrimidine DNA glycosylase (Fpg) that recognizes oxidized DNA purines was to be determined. Furthermore, the solution structures of DNA molecules containing specific lesions recognized by Fpg was to be determined in sequence contexts that either facilitate or hinder this recognition. These objectives were in keeping with the long-term goals of the Principal Investigator's laboratory, that is, to understand the basic mechanisms that underpin base excision repair processing of oxidative DNA lesions and to elucidate the interactions of unrepaired lesions with DNA polymerases. The results of these two DNA transactions can ultimately determine the fate of the cell. These objectives were also in keeping with the goals of our collaborator, Dr. Michael Kennedy, who is studying the repair and recognition of damaged DNA. Overall the goals of this project were congruent with those of the Department of Energy's Health Effects and Life Sciences Research Program, especially to the Structural Biology, the Human Genome and the Health Effects Programs. The mission of the latter Program includes understanding the biological effects and consequences of DNA damages produced by toxic agents in the many DOE waste sites so that cleanup can be accomplished in a safe, effective and timely manner.
Date: August 22, 2005
Creator: Wallace, Susan S.
Partner: UNT Libraries Government Documents Department

How to Relate Complex DNA Repair Genotypes to Pathway Function and, Ultimately, Health Risk

Description: Exposure to ionizing radiation increases the incidence of cancer. However, predicting which individuals are at most risk from radiation exposure is a distant goal. Predictive ability is needed to guide policies that regulate radiation exposure and ensure that medical treatments have maximum benefit and minimum risk. Differences between people in susceptibility to radiation are largely based on their genotype, the genes inherited from their parents. Among the important genes are those that produce proteins that repair DNA damaged by radiation. Base Excision Repair (BER) proteins repair single strand breaks and oxidized bases in DNA. Double Strand Break Repair proteins repair broken chromosomes. Using technologies and information from the Human Genome Project, we have previously determined that the DNA sequence of DNA repair genes varies within the human population. An average of 3-4 different variants were found that affect the protein for each of 37 genes studied. The average frequency of these variants is 5%. Given the many genes in each DNA repair pathway and their many variants, technical ability to determine an individual's repair genotype greatly exceeds ability to interpret the information. A long-term goal is to relate DNA repair genotypes to health risk from radiation. This study focused on the BER pathway. The BER genes are known, variants of the genes have been identified at LLNL, and LLNL had recently developed an assay for BER function using white blood cells. The goal of this initial effort was to begin developing data that could be used to test the hypothesis that many different genotypes have similar DNA repair capacity phenotypes (function). Relationships between genotype and phenotype could then be used to group genotypes with similar function and ultimately test the association of groups of genotypes with health risk from radiation. Genotypes with reduced repair function are expected to increase risk ...
Date: January 9, 2002
Creator: Jones, IM
Partner: UNT Libraries Government Documents Department

The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome

Description: XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar sub-nuclear redistribution in S-phase and co-localize in nuclear foci. The co-localization was observed in mid- to late-S-phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain protein markers of both stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains, but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S-phase that is at least in part carried out coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.
Date: April 20, 2011
Creator: Trego, Kelly S.; Chernikova, Sophia B.; Davalos, Albert R.; Perry, J. Jefferson P.; Finger, L. David; Ng, Cliff et al.
Partner: UNT Libraries Government Documents Department

Structural and Functional Studies on Nucleotide Excision Repair From Recognition to Incision.

Description: Maintenance of the correct genetic information is crucial for all living organisms because mutations are the primary cause of hereditary diseases, as well as cancer and may also be involved in aging. The importance of genomic integrity is underscored by the fact that 80 to 90% of all human cancers are ultimately due to DNA damage. Among the different repair mechanisms that have evolved to protect the genome, nucleotide excision repair (NER) is a universal pathway found in all organisms. NER removes a wide variety of bulky DNA adducts including the carcinogenic cyclobutane pyrimidine dimers induced by UV radiation, benzo(a)pyrene-guanine adducts caused by smoking and the guanine-cisplatin adducts induced by chemotherapy. The importance of this repair mechanism is reflected by three severe inherited diseases in humans, which are due to defects in NER: xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy.
Date: January 1, 2001
Creator: Kisker, Caroline
Partner: UNT Libraries Government Documents Department

[Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, September 1, 1990--July 1, 1991

Description: At this time last year, we had identified two genes in Drosophila that are required for repair of double strand breaks. These genes (mei-41 and mus302) have now been completely analyzed. We have developed an efficient system for site-directed mutagenesis using injected oligonucleotides as a template for the repair of double strand breaks. mus308, a gene responsible for resistance to DNA cross-linking, is being recovered through chromosome walking. It is believed this gene may be the Drosophila analog of the human Fanconi anemia A gene. A collaborative effort to clone the excision repair gene, mei-9, is under way. The X-ray resistance gene mus209 has been cloned. Finally, we are analyzing a group of mus mutations from other labs which we have tagged with a single transposon inserted randomly into one of the two major autosomes. 4 refs.
Date: December 1, 1991
Partner: UNT Libraries Government Documents Department

Computational Investigation of DNA Repair Enzymes: Determination and Characterization of Cancer Biomarkers and Structural Features

Description: Genomic integrity is important for living cells' correct functioning and propagation. Deoxyribonucleic acid as a molecule is a subject to chemical reactions with agents that can come from environment as well as from internal metabolism processes. These reactions can induce damage to DNA and thus compromise the genetic information, and result in disease and death of an organism. To mitigate the damage to DNA, cells have evolved to have multiple DNA repair pathways. Presented here is a computational study of DNA repair genes. The structure of the Homo sapiens direct DNA repair gene ALKBH1 is predicted utilizing homology modeling methods and using AlkB and DBL proteins as templates. Analysis of the obtained structure and molecular dynamics simulations give insights into potentially functionally important residues of the protein. In particular, zinc finger domains are predicted, and lysines that could perform catalytic activities are investigated. Subsequent mutagenesis experiments revealed the effect of the residues predicted to form zinc fingers on activity of ALKBH1. Structure and dynamics of AlkD, a Bascillus cereus base excision DNA repair protein is also studied. This protein has been shown to bind DNA with large alkyl adducts and perform excision catalysis without base flipping which is characteristic to other enzymes in the same family. MD simulations of AlkD revealed that B helix, which interacts with DNA, has higher fluctuations when AlkD is not bound to DNA, and thus could have a role in binding and recognition of DNA. For the purpose of finding biomarkers and to further our understanding of a mode of action of DNA repair genes, statistical methods were applied to identify mutations that are linked to cancer phenotypes. Analysis was based on case-control studies of patients with cancers of prostate, breast, pancreas, lung as well as chronic lymphocytic leukemia from NCBI dbGAP database. Those mutations ...
Date: May 2018
Creator: Silvestrov, Pavel
Partner: UNT Libraries

XPD Helicase Structures and Activities: Insights into the Cancer and Aging Phenotypes from XPD Mutations

Description: Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.
Date: June 2, 2008
Creator: Tainer, John; Fan, Li; Fuss, Jill O.; Cheng, Quen J.; Arvai, Andrew S.; Hammel, Michal et al.
Partner: UNT Libraries Government Documents Department

Isolating human DNA repair genes using rodent-cell mutants

Description: The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab.
Date: March 23, 1987
Creator: Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A. & Mitchell, D.L.
Partner: UNT Libraries Government Documents Department

DOE contractors' workshop: Cellular and molecular aspects of radiation induced DNA damage and repair

Description: For four decades the US Department of Energy and its predecessors have been the lead federal agency in supporting radiation biology research. Over the years emphasis in this program has gradually shifted from dose-effect studies on animals to research on the effects of radiations of various qualities on cells and molecules. Mechanistic studies on the action of radiation at the subcellular level are few in number and there is a need for more research in this area if we are to gain a better understanding of how radiation affects living cells. The intent of this workshop was to bring together DOE contractors and grantees who are investigating the effects of radiation at the cellular and molecular levels. The aims were to foster the exchange of information on research projects and experimental results, promote collaborative research efforts, and obtain an overview of research currently supported by the Health Effects Research Division of the Office of Health and Environmental Research. The latter is needed by the Office for program planning purposes. This report on the workshop which took place in Albuquerque, New Mexico on March 10-11, 1987, includes an overview with future research recommendations, extended abstracts of the plenary presentations, shorter abstracts of each poster presentation, a workshop agenda and the names and addresses of the attendees.
Date: January 1, 1987
Partner: UNT Libraries Government Documents Department

Kinetic Modeling of Damage Repair, Genome Instability, and Neoplastic Transformation

Description: Inducible repair and pathway interactions may fundamentally alter the shape of dose-response curves because different mechanisms may be important under low- and high-dose exposure conditions. However, the significance of these phenomena for risk assessment purposes is an open question. This project developed new modeling tools to study the putative effects of DNA damage induction and repair on higher-level biological endpoints, including cell killing, neoplastic transformation and cancer. The project scope included (1) the development of new approaches to simulate the induction and base excision repair (BER) of DNA damage using Monte Carlo methods and (2) the integration of data from the Monte Carlo simulations with kinetic models for higher-level biological endpoints. Methods of calibrating and testing such multiscale biological simulations were developed. We also developed models to aid in the analysis and interpretation of data from experimental assays, such as the pulsed-field gel electrophoresis (PFGE) assay used to quantity the amount of DNA damage caused by ionizing radiation.
Date: March 17, 2007
Creator: Stewart, Robert D
Partner: UNT Libraries Government Documents Department

[Ionizing radiation-induced DNA damage and its repair in human cells]. Progress report, [April 1, 1993--February 28, 1994]

Description: The excision of radiation-induced lesions in DNA by a DNA repair enzyme complex, namely the UvrABC nuclease complex, has been investigated. Irradiated DNA was treated with the enzyme complex. DNA fractions were analyzed by gas chromatography/isotope-dilution mass spectrometry. The results showed that a number pyrimidine- and purine-derived lesions in DNA were excised by the UvrABC nuclease complex and that the enzyme complex does not act on radiation-induced DNA lesions as a glycosylase. This means that it does not excise individual base products, but it excises oligomers containing these lesions. A number of pyrimidine-derived lesions that were no substrates for other DNA repair enzymes investigated in our laboratory were substrates for the UvrABC nuclease complex.
Date: July 1, 1994
Partner: UNT Libraries Government Documents Department