166 Matching Results

Search Results

Advanced search parameters have been applied.

National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

Description: The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 ...
Date: May 1, 1997
Creator: Rothman, E.Z. & Hastings, J.B.
Partner: UNT Libraries Government Documents Department

Field analysis of mercury in water, sediment and soil using static headspace analysis

Description: We developed a field screening method for rapid analysis of Hg in water, soil, and sediment, which can be applied cost-effectively at Hg-contaminated sites. Samples are chemically pretreated in ordinary containers, followed by analysis of the sample headspace Hg vapor using a portable commercial analyzer. Hg in water samples is reduced directly by the addition of stannous chloride, while solids are first digested with aqua regia or piranha solution to liberate the Hg from the solids. Aided by vigorous agitation after adding the reductant, the elemental Hg partitions between solution and headspace according to Henry`s Law. The method requires about 2 and 15 minutes to complete for water and solids, respectively. The method provides very useful detection limits for water (0.1 {mu}g/L) and solids (2-3{mu}g/g). Intercomparisons with laboratory-analyzed environmental samples show good agreement.
Date: December 31, 1994
Creator: Kriger, A.A. & Turner, R.R.
Partner: UNT Libraries Government Documents Department

Semi-annual report of the Department of Energy, Office of Environmental Management, Quality Assessment Program

Description: This report presents the results from the analysis of the 44th set of environmental quality assessment samples (QAP XLIV) that were received on or before June 3, 1996. The QAP is designed to test the quality of environmental measurements being reported to the Department of Energy by it`s contractors. Since 1976, samples have been prepared and analyzed by the Environmental measurements Laboratory.
Date: July 1, 1996
Creator: Sanderson, C.G. & Greenlaw, P.
Partner: UNT Libraries Government Documents Department

Road transportable analytical laboratory (RTAL) system. Quarterly report, August--October 1995

Description: Goal is the development and demonstration of a system to meet DOE needs for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. The system consists of a set of individual laboratory modules. This report documents progress on Phase II, which is a transition to Maturity Level 5, Full-Scale Demonstration.
Date: November 1, 1995
Partner: UNT Libraries Government Documents Department

A programmable autosampler for a field deployable tritium analysis system

Description: Researchers in the Environmental Technology Section of the Savannah River Technology Center, in cooperation with Sampling Systems, Inc. are developing a fully programmable, remotely operated, fixed volume, automatic sampler for use with the field deployable tritium analysis system currently under development at U. of GA`s Center for Applied Isotope Studies. The sampler will collect a limited-volume sample and perform on-line sample purification for tritium analyses from multiple collection sites. Pneumatically operated stainless steel samplers operate satisfactorily upon remote activation. The one-step purification system removes all impurities with interfere with tritium analysis by liquid scintillation. Field testing has confirmed system operation. The autosampler may act as a stand-alone device and is enclosed in a rugged, field-portable case with wheels. The system weighs about 40 lbs.
Date: August 1, 1996
Creator: Hofstetter, K.J.; Cable, P.R.; Beals, D.M. & Jones, J.
Partner: UNT Libraries Government Documents Department

Separation and collection of iodine, sulfur, and phosphorous anion complexes for subsequent radiochemical analysis

Description: We developed a method to separate anion complexes of sulfur, iodine, and phosphorus to enable determination by radiochemical techniques. This method involves ion chromatographic separation of the anion complexes from other highly emitting radioactive species such as cesium-137 and strontium-90 which interfere with radiochemical analysis. We essentially use the ion chromatograph as a sample pretreatment method. The samples are injected onto a cation exchange column which allows the anions to pass through while retaining the positively charged species. These anions are collected in the column effluent and measured by nuclear counting methods. The method was developed to enable measurement of trace radionuclides in radioactive waste. This report establishes the separation and collection protocol, collection efficiencies for sulfur, iodine, and phosphorus, which are dependent upon the sample matrix, and overall efficiencies and detection limits for the separation and subsequent radiochemical analysis.
Date: August 1, 1996
Creator: Ekechukwu, A.A. & Dewberry, R.A.
Partner: UNT Libraries Government Documents Department

External exposure to radionuclides in air, water, and soil

Description: Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. The dose coefficients are intended for use by Federal Agencies in calculating the dose equivalent to organs and tissues of the body.
Date: May 1, 1996
Creator: Eckerman, K.F. & Ryman, J.C.
Partner: UNT Libraries Government Documents Department

IPEP: The integrated performance evaluation program for the Department of Energy`s Office of Environmental Management

Description: The quality of the analytical data being provided to DOE`s Office of Environmental Management (EM) for environmental restoration activities and the extent to which these data meet the data quality objectives are critical in the decision-making process. One of several quality metrics that can be used in evaluating a laboratory is its performance in performance evaluation (PE) programs. In support of DOE`s environmental restoration and waste management efforts, EM has been charged with developing and implementing a program to assess the performance of participating laboratories. Argonne National Laboratory (ANL) and DOE`s Environmental Measurements Laboratory (EML) and Radiological and Environmental Sciences Laboratory (RESL) have been collaborating on the development and implementation of a comprehensive Integrated Performance Evaluation Program (IPEP) for DOE-wide implementation. The IPEP will use results from existing inorganic, organic, and radiological PE programs when these are available and appropriate for the analytes and matrices being determined for DOE`s EM activities. Existing programs include the U.S. Environmental Protection Agency`s (EPA`s) Contract Laboratory Program (CLP), the Water Supply (WS) and Water Pollution (WP) PE studies for inorganic and organic analytes, and DOE`s Quality Assessment Program (QAP) for radiological analytes. In addition, DOE has begun the development of the Mixed Analyte Performance Evaluation Program (MAPEP) to address the needs of the DOE Complex. These PE programs provide a spectrum of matrices and analytes covering the various inorganic, organic, and low-level radiologic categories found in routine environmental and waste samples. These PE programs already provide some assessment of laboratory performance; IPEP will expand these assessments by evaluating historical performance, as well as results from multiple PE programs, thereby providing an enhanced usage of the PE program information.
Date: August 1, 1995
Creator: Lindahl, P.C.; Streets, W.E. & Bass, D.A.
Partner: UNT Libraries Government Documents Department

Analytical Chemistry Laboratory Progress Report for FY 1994

Description: The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.
Date: December 1, 1994
Creator: Green, D.W.; Boparai, A.S. & Bowers, D.L.
Partner: UNT Libraries Government Documents Department

Maintaining data quality in an environmental testing laboratory

Description: In today's competitive and highly litigious world, it is critical that any laboratory generating data for the environmental and allied industries have a world-class Quality Assurance Program. This Plan must conform to the requirements of every agency and client with whom the lab does business. The goal of such a program is data defensibility; i.e., data validity. Data (usually qualitative analyte [compound or element] identifications and quantitative numerical results) are the end results of nearly all analytical laboratory processes, and the source of revenue. Clients pay for results. The clients expect the results to be accurate, precise, and repeatable. If their data has to go to court, the laboratory will be called upon to defend the accuracy and precision of their work. Without a strong QA program, this will be impossible. The potential implications and repercussions of non-defensible lab data are far-reaching and very costly in terms of loss of future revenues and in legal judgments.
Date: March 5, 2001
Creator: Cohen, Roy J.
Partner: UNT Libraries Government Documents Department

Energy Transformation in Molecular Electronic Systems

Description: This laboratory has developed many new ideas and methods in the electronic spectroscopy of molecules. This report covers the contract period 1993-1995. A number of the projects were completed in 1996, and those papers are included in the report. The DOE contract was terminated at the end of 1995 owing to a reorganizational change eliminating nationally the projects under the Office of Health and Environmental Research, U. S. Department of Energy.
Date: May 17, 1999
Creator: Kasha, Michael
Partner: UNT Libraries Government Documents Department

Visual Sample Plan Version 2.0 User's Guide

Description: This user's guide describes Visual Sample Plan (VSP) Version 2.0 and provides instructions for using the software. VSP selects the appropriate number and location of environmental samples to ensure that the results of statistical tests performed to provide input to environmental decisions have the required confidence and performance. VSP Version 1.0 provides sample-size equations or algorithms needed by specific statistical tests appropriate for specific environmental sampling objectives. The easy-to-use program is highly visual and graphic. VSP runs on personal computers with Microsoft Windows operating systems (95, 98, Millenium Edition, 2000, and Windows NT). Designed primarily for project managers and users without expertise in statistics, VSP is applicable to any two-dimensional geographical population to be sampled (e.g., surface soil, a defined layer of subsurface soil, building surfaces, water bodies, and other similar applications) for studies of environmental quality.
Date: September 23, 2002
Creator: Hassig, Nancy L.; Wilson, John E.; Gilbert, Richard O.; Carlson, Deborah K.; O'Brien, Robert F.; Pulsipher, Brent A. et al.
Partner: UNT Libraries Government Documents Department

Verification of the Accuracy of Sample-Size Equation Calculations for Visual Sample Plan Version 0.9C

Description: Visual Sample Plan (VSP) is a software tool being developed to facilitate the design of environmental sampling plans using a site-map visual interface, standard sample-size equations, a variety of sampling grids and random sampling plans, and graphs to visually depict the results to the user. This document provides comparisons between sample sizes calculated by VSP Version 0.9C, and sample sizes calculated by test code written in the S-Plus language. All sample sizes calculated by VSP matched the independently calculated sample sizes. Also the VSP implementation of the ELIGPRID-PC algorithm for hot spot probabilities is shown to match previous results for 100 standard test cases. The Conclusions and Limitations section of this document lists some aspects of VSP that were not tested by this suite of tests and recommends simulation-based enhancements for future versions of VSP.
Date: January 29, 2001
Creator: Davidson, James R.
Partner: UNT Libraries Government Documents Department

The Center for Environmental Kinetics Analysis: an NSF- and DOE-funded Environmental Molecular Science Institute (EMSI) at Penn State

Description: Physicochemical and microbiological processes taking place at environmental interfaces influence natural processes as well as the transport and fate of environmental contaminants, the remediation of toxic chemicals, and the sequestration of anthropogenic CO2. A team of scientists and engineers has been assembled to develop and apply new experimental and computational techniques to expand our knowledge of environmental kinetics. We are also training a cohort of talented and diverse students to work on these complex problems at multiple length scales and to compile and synthesize the kinetic data. Development of the human resources capable of translating molecular-scale information into parameters that are applicable in real world, field-scale problems of environmental kinetics is a major and relatively unique objective of the Institute's efforts. The EMSI team is a partnership among 10 faculty at The Pennsylvania State University (funded by the National Science Foundation Divisions of Chemistry and Earth Sciences), one faculty member at Juniata College, one faculty member at the University of Florida, and four researchers drawn from Los Alamos National Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory (funded by the Department of Energy Division of Environmental Remediation Sciences). Interactions among the applied and academic scientists drives research approaches aimed toward solving important problems of national interest. The Institute is organized into three interest groups (IGs) focusing on the processes of dissolution (DIG), precipitation (PIG), and microbial reactions at surfaces (BIG). Some of the research activity from each IG is highlighted to the right. The IGs interact with each other as each interest group studies reactions across the molecular, microscopic, mesoscopic and, in most cases, field scales. For example, abiotic dissolution and precipitation reactions of Fe oxides as studied in the Dissolution IG provides the baseline for kinetic behavior as the BIG researches the interaction of microorganisms with these ...
Date: April 19, 2007
Creator: Brantley, S. L.; Burgos, William D.; Dempsey, Brian A.; Heaney, Peter J.; Kubicki, James D.; Lichtner, Peter C. et al.
Partner: UNT Libraries Government Documents Department

Use of CHELEX-100{reg_sign} for radionuclide purification

Description: A method for selectively removing yttrium-90 from its parent strontium-90 contained in an environmental sample includes loading the sample onto a column containing a chelating ion-exchange resin capable of retaining yttrium-90; washing the column with a solution capable of removing strontium, calcium and other contaminants from the yttrium-90 fraction retained on the column; removing excess acetate salts from the column; eluting yttrium-90 solution from the column and adjusting the pH of this solution to about 2.7; filtering the yttrium-90 solution and weighting this solution for gravimetric yield; and, counting the yttrium-90 containing solution with a radiological counter for a time sufficient to achieve the statistical accuracy desired. It is preferred that the chelating ion-exchange resin is a bidente ligand having the chemical name iminodiacetic acid mounted on a divinyl benzene substrate, converted from sodium form to ammonia form. Its name is Chelex-100{reg_sign}.
Date: December 1993
Creator: Huntley, M. W.
Partner: UNT Libraries Government Documents Department

Characterizing electrodynamic shakers

Description: An electrodynamic shaker is modeled as a mixed electrical/mechanical system with an experimentally derived two port network characterization. The model characterizes the shaker in a manner that the performance of the shaker with a mounted load (test item and fixture) can be predicted. The characterization depends on the measurements of shaker input voltage and current, and on the acceleration of the shaker armature with several mounted loads. The force into the load is also required, and can be measured directly or inferred from the load apparent mass.
Date: December 31, 1996
Creator: Smallwood, D.O.
Partner: UNT Libraries Government Documents Department

Evaluation of radiochemical data usability

Description: This procedure provides a framework for implementation of radiochemical data verification and validation for environmental remediation activities. It has been developed through participation of many individuals currently involved in analytical radiochemistry, radiochemical validation, and validation program development throughout the DOE complex. It should be regarded as a guidance to use in developing an implementable radiochemical validation strategy. This procedure provides specifications for developing and implementing a radiochemical validation methodology flexible enough to allow evaluation of data useability for project-specific Data Quality Objectives (DQO). Data produced by analytical methods for which this procedure provides limited guidance are classified as {open_quotes}non-routine{close_quotes} radionuclides and methods, and analyses by these methods may necessitate adoption of modified criteria from this procedure.
Date: April 1, 1997
Creator: Paar, J.G. & Porterfield, D.R.
Partner: UNT Libraries Government Documents Department

Resonant laser ablation ion trap mass spectrometry -- Recent applications for chemical analysis

Description: Resonant Laser Ablation (RLA) is a useful ionization process for selectively producing gas phase ions from a solid sample. Recent use of RLA for mass spectrometry by this group and by others has produced a wealth of knowledge and useful analytical techniques. The method relies upon the focusing of modest intensity laser pulses ({le} 10{sup 7} W {center_dot} Cm{sup {minus}2}) upon a sample surface. A small quantity of material is vaporized, and atoms of desired analyte are subsequently ionized by (n + m) photon processes in the gas phase (where n = number of photons to a resonant transition and m = number of photons to exceed the ionization limit). The authors have been using (2 + 1) resonant ionization schemes for this work. Quadrupole ion trap mass spectrometry is realizing a very prominent role in current mass spectrometric research. Ion traps are versatile, powerful and extremely sensitive mass spectrometers, capable of a variety of ionization modes, MS{sup n} type experiments, high mass ranges and high resolution, all for a fraction of the cost of other instrumentation with similar capabilities. Quadrupole ion traps are ideally suited to pulsed ionization sources such as laser ionization methods, since their normal operational method (Mass Selective Instability) relies upon the storage of ions from a finite ionization period followed by ejection and detection of these ions based upon their mass to charge ratios. The paper describes selective ionization for trace atomic analysis, selective reagent ion source for ion chemistry investigations, and the analysis of ``difficult`` environmental contaminants, i.e., TBP.
Date: December 31, 1995
Creator: Gill, C.G.; Garrett, A.W.; Hemberger, P.H. & Nogar, N.S.
Partner: UNT Libraries Government Documents Department

Ecological monitoring: Outreach to educators in the community

Description: Reporting Environmental Data was a one-week institute for elementary and middle school teachers and principals. Participants gained insight into Los Alamos National Laboratory`s environmental monitoring programs through performing monitoring in the field. A teacher educator collaborated with a plant ecologist, an entomologist, and two master teachers to provide this institute. During the institute, there were field experiences with forest and insect sampling followed by research and summarizing results. The goals for the institute were all met. These included the following: have scientists lead field experiences with forest and insect sampling which mirror their actual laboratory practices; create understanding of the scope of the environmental monitoring program at Los Alamos National Laboratory; establish links between the professional standards for science and mathematics education and institute activities, use computer technology as both a research tool and to produce a technical summary; create educational environments. Los Alamos National Laboratory is very interested in continually improving communication with the surrounding community, especially when that communication deals with environmental surveillance. The summer institute was an effective way to involve teachers in hands-on experiences with environmental monitoring. This, in turn, taught those educators about the extent of environmental monitoring. Now those teachers are using their experiences to develop curriculum for students.
Date: April 1, 1997
Creator: Johnston, J.A.; Haarmann, T.K. & Foxx, T.S.
Partner: UNT Libraries Government Documents Department

Automating the analytical laboratory via the Chemical Analysis Automation paradigm

Description: To address the need for standardization within the analytical chemistry laboratories of the nation, the Chemical Analysis Automation (CAA) program within the US Department of Energy, Office of Science and Technology`s Robotic Technology Development Program is developing laboratory sample analysis systems that will automate the environmental chemical laboratories. The current laboratory automation paradigm consists of islands-of-automation that do not integrate into a system architecture. Thus, today the chemist must perform most aspects of environmental analysis manually using instrumentation that generally cannot communicate with other devices in the laboratory. CAA is working towards a standardized and modular approach to laboratory automation based upon the Standard Analysis Method (SAM) architecture. Each SAM system automates a complete chemical method. The building block of a SAM is known as the Standard Laboratory Module (SLM). The SLM, either hardware or software, automates a subprotocol of an analysis method and can operate as a standalone or as a unit within a SAM. The CAA concept allows the chemist to easily assemble an automated analysis system, from sample extraction through data interpretation, using standardized SLMs without the worry of hardware or software incompatibility or the necessity of generating complicated control programs. A Task Sequence Controller (TSC) software program schedules and monitors the individual tasks to be performed by each SLM configured within a SAM. The chemist interfaces with the operation of the TSC through the Human Computer Interface (HCI), a logical, icon-driven graphical user interface. The CAA paradigm has successfully been applied in automating EPA SW-846 Methods 3541/3620/8081 for the analysis of PCBs in a soil matrix utilizing commercially available equipment in tandem with SLMs constructed by CAA.
Date: October 1, 1997
Creator: Hollen, R. & Rzeszutko, C.
Partner: UNT Libraries Government Documents Department

Development of a technique for mercury speciation and quantification using gas chromatography/mass spectrometry

Description: One element of concern to DOE is mercury. Mercury was used extensively at the DOE facilities in Oak Ridge, Tennessee from 1950 to 1963 in the process of making lithium deuteride, a component of nuclear weapons. Although both the inorganic and organometallic forms of mercury are toxic to humans, the organic compounds are often more toxic. Since the toxicity of mercury is a function of its chemical form, an understanding of the interactions between commercially discharged mercury, naturally occurring mercury, and the environment in which they are present is vital. In this report, the authors have been investigating gas chromatography/mass spectrometry (GC/MS) for the analysis of both the organometallic and inorganic forms of mercury in the same environmental sample (e.g., solutions, soils, and sludges). Although gas chromatography is the classical technique for analyzing organic molecules, (e.g., organometallic compounds) little has been done on the analysis of inorganic compounds. In a previous publication, the authors described how a solid phase microextraction (SPME) fiber could be used to sample organomercurials from aqueous samples. An alkylation reaction was then carried out to transform chemically mercury nitrate into dimethylmercury; subsequent GC/MS analysis of this compound permitted quantification of the inorganic constituent. Subsequently, several different alkylation reagents have been synthesized that methylate any inorganic mercury compound to methylmercury iodide. Here, the authors report results on alkylation reaction time and the effect of pH on the population of the product.
Date: July 1, 1997
Creator: Barshick, S.A.; Barshick, C.M.; Britt, P.F.; Vance, M.A. & Duckworth, D.C.
Partner: UNT Libraries Government Documents Department

Determination of Nitrogen by Flow Injection Analysis in Environmental and Wastewaters

Description: In summary, three generations of Lachat FIA systems have been used in the laboratory over a period of 13 yrs, running, in addition to the 4 N methods, Cr{sup +6}, SiO{sub 2}, Fluoride by ISE. Overall flow injection systems have been versatile and reliable and a good choice in the lab for analyzing a wide variety of samples quickly.
Date: March 1, 1999
Creator: Straw, K. A.
Partner: UNT Libraries Government Documents Department


Description: Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.
Date: October 12, 2001
Partner: UNT Libraries Government Documents Department