592 Matching Results

Search Results

Advanced search parameters have been applied.

Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

Description: Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency
Date: October 29, 1998
Creator: Pande, P. K.
Partner: UNT Libraries Government Documents Department

Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12

Description: This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.
Date: April 1, 2001
Creator: Izequeido, Alexandor
Partner: UNT Libraries Government Documents Department

Increasing Heavy Oil in the Wilmington Oil Fiel Through Advanced Reservoir Characterization and Thermal Production Technologies. Annual Report, March 30, 1995--March 31, 1996

Description: The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs.
Date: December 1, 1996
Creator: Allison, Edith
Partner: UNT Libraries Government Documents Department

Improved Efficiency of Miscible C02 Floods and Enhanced Prospects for C02 Flooding Heterogeneous Reservoirs

Description: Surfactant and foam properties have been evaluated at high pressure using the foam durability apparatus. For a number of surfactant solutions the interfacial tension with cense CO2, critical micelle concentrations, foaming ability, and foam stability were determined. Preliminary results show that these tests correlate well to predict surfactant properties and mobility in cores. Work has also restarted in the parallel-dual permeability system.
Date: October 10, 1996
Creator: Guo, Boyn (Gordon); Schechter, David S.; Tsau, Jyun-Syung; Grigg, Reid B. & Chang, Shih-Hsien (Eric)
Partner: UNT Libraries Government Documents Department

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

Description: The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.
Date: May 30, 1997
Creator: Laue, Mike L.
Partner: UNT Libraries Government Documents Department

C02 Huff-n-Puff Process in a Light Oil shallow Shelf Carbonate Reservoir

Description: The principal objective of this CO2 Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO2 H-n-P process, coupled with the Central Vacuum Unit (CVU) reservoir characterization components will be used to determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy�s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is considered a timely effort for near-term goals.
Date: June 30, 1997
Creator: Kovar, Mark & Wehner, Scott
Partner: UNT Libraries Government Documents Department

Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Reservoir

Description: Natural fractures exert a strong influence over oil production in Spraberry Trend Area reservoirs in the Permian Basin of west Texas. The importance of the fracture network has been known since the 1950s, but until recently, there has been very little detailed study of the fractures themselves. In 1996, a horizontal Spraberry well was cored as part of a DOE Class III Field Demonstration Project. Fractures from the horizontal core as well as other fractures encountered in vertical Spraberry cores were analyzed in detail for information on both large scale features including orientation and spacing and small-scale features such as the relationships between fracture mineralization and matrix rock composition. At least three sets of fractures are found within the upper and middle Spraberry cores. These sets have distinct orientations, spacing, mineralization, distribution with respect to lithology, and surface characteristics (Lorenz, 1997). Fractures found in the 1U zone of the upper Spraberry have a NE strike, and tend to be partly mineralized with barite, quartz, and dolomite. Distribution of these mineral phases can greatly affect conductivity between the fractures and the rock matrix. The 5U zone of the upper Spraberry contains fractures with NNE and ENE orientations. The NNE set of fractures has stepped fracture surfaces indicating a shear origin, and minor amounts of quartz and dolomite mineralization. The ENE fracture set has smooth planar surfaces of tension origin with some calcite mineralization present. Natural fractures in black shales overlying both the 1U and the 5U have an ENE orientation similar to unmineralized fractures in the 5U. No fractures were encountered in similar shales underlying reservoir zones. A set of hairline fractures, most completely healed with calcite cement was also found in some Middle Spraberry cores. The unique nature of each of these fracture sets implies that fracturing probably occurred as ...
Date: December 17, 1997
Creator: Schechter, David S.
Partner: UNT Libraries Government Documents Department

Feasability of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore California Reservoir Through the Drilling and Completion of a Trilateral Horizontal Well

Description: The main objective of this project is to devise an effective redevelopment strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field's low productivity. To improve productivity and enhance recoverable reserves, the following specific goals are proposed: ° Develop an integrated database of all existing data from work done by the former ownership group. ° Expand reservoir drainage and reduce sand problems through horizontal well drilling and completion. ° Operate and validate reservoirs� conceptual model by incorporating new data from the proposed trilateral well. ° Transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs.
Date: October 29, 1996
Creator: Coombs, Steven F.
Partner: UNT Libraries Government Documents Department

Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore California Reservoir Through the Drilling and Completion of a Trilateral Horizontal Well

Description: The main objective of this project is to devise an effective redevelopment strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field's low productivity. To improve productivity and enhance recoverable reserves, the following specific goals are proposed: ° Develop an integrated database of all existing data from work done by the former ownership group. ° Expand reservoir drainage and reduce sand problems through horizontal well drilling and completion. ° Operate and validate reservoirs� conceptual model by incorporating new data from the proposed trilateral well. ° Transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs.
Date: December 31, 1996
Creator: Coombs, Steven F.
Partner: UNT Libraries Government Documents Department

An Integrated Study of the Grayberg/San andres Reservoir, Foster and South Cowden Fields, Ector County, Texas

Description: The characteristics of seismic- derived porosity maps have been further qualified by geologic and production relationships not previously explained nor their significance recognized. Patterns of seismic- derived porosity in the upper Grayburg compare accurately to geologic well data and to historic oil production in section 36. Areas of economic reservoir seem to be separated hydrodynamically, based on the porosity distribution and related differences of gas- to- oil ratio values. Porosity values east of the current limit of the seismic inversion model (where the current seismic data quality is poor) have been estimated for the Grayburg zones, to be used in the next production model run. Production data for that area are being requested from offset operators. When those data become available, they will be included in a revised engineering model will be made to match the production history and to simulate the effect of waterflood efforts. The mapping of porosity of the upper Grayburg zones from the seismic data was completed during the third quarter of 1997, with further qualification of the results done during the fourth quarter. The cross- plots of well log- determined porosity versus seismic velocity have shown a strong linear relationship useful for calibrating the conversion of velocity to porosity. Maps of porosity for the A, B, and C zones are being tested against geological and engineering data. Complexity of reservoir demonstrated in those maps has exposed the need to include significantly more geologic and production data in the area around section 36 in order to create a proper model for the Grayburg reservoir in section 36.
Date: February 27, 1997
Partner: UNT Libraries Government Documents Department

An Integrated Study of the Grayburg/San Andres Reservoir, Foster and South Cowden Fields, Ector County Texas

Description: For a part of the Foster and South Cowden (Grayburg-San Andres) oil fields, improvement in oil production has been accomplished, in part, by using �pipeline fracturing� technology in the most recent completion to improve fluid flow rates, and filtration of waterflood injection water to preserve reservoir permeability. The 3D seismic survey acquired in conjunction with this DOE project has been used to calculate a 3D seismic inversion model, which has been analyzed to provide detailed maps of porosity within the productive upper 250 feet of the Grayburg Formation. Geologic data, particularly from logs and cores, have been combined with the geophysical interpretation and production history information to develop a model of the reservoir that defines estimations of remaining producible oil. The integrated result is greater than the sum of its parts, since no single data form adequately describes the reservoir. Each discipline relies upon computer software that runs on PC-type computers, allowing virtually any size company to affordably access the technology required to achieve similar results.
Date: October 23, 1997
Creator: Weinbrandt, Richard; Trentham, Robert C. & Robinson, William
Partner: UNT Libraries Government Documents Department

Lateral Drilling and Completion Technologies for Shallow-Shelf Carbonates of the Red River and Ratcliffe Formations, Williston Basin

Description: Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil- well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius laterals in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2590 to 2890 m (8500 to 9500 ft) in Richland Co., MT; Bowman Co., ND; and Harding Co., SD.
Date: July 31, 1997
Creator: Gibbons, David; Carrell, Larry A. & George, Richard D.
Partner: UNT Libraries Government Documents Department

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

Description: The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.
Date: October 15, 1997
Creator: Walton, A.; McCune, D.; Green, D.W.; Willhite, G.P.; Watney, L.; Michnick, M. et al.
Partner: UNT Libraries Government Documents Department

Design and Implementation of a C02 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in a Shallow Shelf Carbonate Approaching Waterflood Depletion

Description: The objective is to utilize reservoir characteristics and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. Also the project seeks to demonstrate the performance and economic viability of the project in the field.
Date: August 1, 1997
Partner: UNT Libraries Government Documents Department

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

Description: The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi 2 in one of the fields will be chosen for reservoir simulation.
Date: July 30, 1997
Creator: Dutton, Shirley P.
Partner: UNT Libraries Government Documents Department

Research on Oil Recovery Mechanisms in Heavy Oil Reservoirs

Description: The goal of this project is to increase recovery of heavy oils. Towards that goal studies are being conducted in how to assess the influence of temperature and pressure on the absolute and relative permeability to oil and water and on capillary pressure; to evaluate the effect of different reservoir parameters on the in site combustion process; to develop and understand mechanisms of surfactants on for the reduction of gravity override and channeling of steam; and to improve techniques of formation evaluation.
Date: March 31, 1998
Creator: Castanier, Louis M. & Brigham, William E.
Partner: UNT Libraries Government Documents Department

POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing

Description: The objective of this project is to develop and demonstrate a Proof-of-Concept (POC) scale oil agglomeration technology capable of increasing the recovery and improving the quality of fine coal strearrts. Two distinct agglomeration devices will be tested, namely, a conventional high shear mixer and a jet processor. To meet the overall objective an eleven task work plan has been designed. The work ranges from batch and continuous bench-scale testing through the design, commissioning and field testing of POC-scale agglomeration equipment.
Date: November 12, 1998
Partner: UNT Libraries Government Documents Department

Post Waterflood C02 Miscible Flood in Light Oil Fluvial-Dominated Deltaic Reservoirs

Description: Only one well remains in production in the Port Neches CO2 project; Kuhn #14. Production from this project is approaching economic limit and the project is nearing termination at this point. The work over to return Kuhn #38 to production failed and the well is currently shut in. All produced CO2 is currently being reinjected in the reservoir. The CO2 recycled volume is 2 MMCFD.
Date: January 13, 1998
Creator: Augustine, John
Partner: UNT Libraries Government Documents Department

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California

Description: This project reactivates ARCO�s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.
Date: October 21, 1997
Creator: Jenkins, Creties; Sprinkel, Doug; Deo, Milind; Wydrinski, Ray & Swain, Robert
Partner: UNT Libraries Government Documents Department

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

Description: A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.
Date: March 20, 1998
Creator: Schamel, Steven
Partner: UNT Libraries Government Documents Department

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

Description: This project reactivates ARCO�s idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.
Date: July 29, 1997
Creator: Schamel, Steven
Partner: UNT Libraries Government Documents Department

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

Description: A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.
Date: February 27, 1998
Creator: Schamel, Steven
Partner: UNT Libraries Government Documents Department

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

Description: A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.
Date: August 31, 1998
Creator: Schamel, Steven
Partner: UNT Libraries Government Documents Department