121 Matching Results

Search Results

Advanced search parameters have been applied.

Understanding the O4,5 edge structure of actinide metals

Description: Using electron energy-loss spectroscopy (EELS) and many-electron atomic spectral calculations, we examine the O{sub 4,5} (5d {yields} 5f) edge structure of the ground-state {alpha} phase of Th, U, Np, Pu, Am, and Cm metal. Results show that the dipole-allowed transitions are contained within the giant resonance and that the small pre-peak in the actinide 5d {yields} 5f transition should not be labeled the O{sub 5} peak, but rather the {Delta}S=1 peak. Lastly, we present for the first time the O{sub 4,5} EELS spectra for Np, Am, and Cm metal.
Date: December 12, 2007
Creator: Butterfield, M; Moore, K; der Laan, G v; Wall, M & Haire, D
Partner: UNT Libraries Government Documents Department

Towards Atomic Column-by-Column Spectroscopy

Description: The optical arrangement of the scanning transmission electron microscope (STEM) is ideally suited for performing analysis of individual atomic columns in materials. Using the incoherent Z-contrast image as a reference, and arranging incoherent conditions also for the spectroscopy, a precise correspondence is ensured between features in the inelastic image and elastic signals. In this way the exact probe position needed to maximise the inelastic signal from a selected column can be located and monitored during the analysis using the much higher intensity elastic signal. Although object functions for EELS are typically less than 1 {Angstrom} full width at half maximum, this is still an order of magnitude larger than the corresponding object functions for elastic (or diffuse) scattering used to form the Z-contrast image. Therefore the analysis is performed with an effective probe that is significantly broader than that used for the reference Z-contrast image. For a 2.2 {Angstrom} probe the effective probe is of the order of 2.5 {Angstrom}, while for a 1.3 {Angstrom} probe the effective probe is 1.6 {Angstrom}. Such increases in effective probe size can significantly reduce or even eliminate contrast between atomic columns that are visible in the image. However, this is only true if we consider circular collector apertures. Calculations based upon the theory of Maslen and Rossouw (Maslen and Rossouw 1984; Rossouw and Maslen 1984) show that employing an annular aperture can reduce the FWHM of the inelastic object function down to values close 0.1 {Angstrom}. With practical aperture sizes it should be possible to achieve this increased spatial resolution without loosing too much signal.
Date: September 6, 1998
Creator: Pennycook, S.J. & Rafferty, B.
Partner: UNT Libraries Government Documents Department

High-resolution magnetic imaging and investigations of thin-film magnetism with spin-polarized electron, ion and atom probes. Progress report, November 1, 1994--October 31, 1995

Description: This is a progress report for the period 1 November, 1994 to 31 October, 1995. Research during this grant year includes: (1) Completion of the Spin-Polarized Electron Energy Loss Spectroscopy (SPEELS) research program. (2) Design of an improved and much more intense metastable atom source that can also be converted to a Rydberg atom beam, for continuing studies utilizing Spin-Polarized Metastable (Atom) Deexcitation Spectroscopy (SPMDS), and to initiate new investigations of interactions of Rydberg atoms with surfaces. (3) Development of a spin-polarized He{sup +} ion source for studies of ion-surface interaction dynamics and epitaxially grown magnetic films utilizing Spin-Polarized Ion Neutralization Spectroscopy (SPINS).
Date: April 1, 1995
Creator: Walters, G.K. & Dunning, F.B.
Partner: UNT Libraries Government Documents Department

EXELFS of Metallic Glasses

Description: The feasibility of using extended energy-loss fine structure (EXELFS) obtained from {approximately}1 nm regions of metallic glasses to study their short-range order has been examined. Ionization edges of the metallic glasses in the electron energy-loss spectrum (EELS) have been obtained from PdNiP bulk metallic glass and Ni{sub 2}P polycrystalline powder in a transmission electron microscope. The complexity of EXELFS analysis of L- and M-ionization edges of heavy elements (Z>22, i.e. Ni and Pd) is addressed by theoretical calculations using an ab initio computer code, and its results are compared with the experimental data.
Date: November 30, 1999
Creator: Ito, Y.; Alamgir, F.M.; Schwarz, R.B.; Jain, H. & Williams, D.B.
Partner: UNT Libraries Government Documents Department

Ab-initio calculations of density of states for Ti-oxide

Description: Electron energy-loss spectroscopy has been shown to be a powerful tool to determine the chemistry and the electronic structure at grain boundaries by analyzing the energy loss near edge structure (ELNES). This paper describes the ability of ab-initio density of state calculations to perform detailed quantitative analysis at interfaces.
Date: April 1, 1997
Creator: Duscher, G.; Koestlmeier, S. & Elsaesser, C.
Partner: UNT Libraries Government Documents Department

A combined experimental and theoretical approach to atomic scale characterization

Description: Recently, the scanning transmission electron microscope has become capable of forming electron probes of atomic dimensions. Through the technique of Z-contrast imaging, it is now possible to form atomic resolution images with high compositional sensitivity from which atomic column positions can be directly determined. An incoherent image of this nature also allows atomic resolution chemical analysis to be performed, by locating the probe over particular columns or planes seen in the image while electron energy loss spectra are collected. Such data represents either an ideal starting point for first principles theoretical calculations or a test of theoretical predictions. The authors present several examples where theory and experiment together give a very complete and often surprising atomic scale view of complex materials.
Date: February 1, 1998
Creator: Pennycook, S.J.; Chisholm, M.F.; Yan, Y.; Duscher, G. & Pantelides, S.T.
Partner: UNT Libraries Government Documents Department

Chemical effects of lanthanides and actinides in glasses determined with electron energy loss spectroscopy

Description: Chemical and structural environments of f-electron elements in glasses are the origin of many of the important properties of materials with these elements; thus oxidation state and chemical coordination of lanthanides and actinides in host materials is an important design consideration in optically active glasses, magnetic materials, perovskite superconductors, and nuclear waste materials. We have made use of the line shapes of Ce to determine its oxidation state in alkali borosilicate glasses being developed for immobilization of Pu. Examination of several prototype waste glass compositions with EELS shows that the redox state of Ce doped to 7 wt% could be varied by suitable choice of alkali elements. EELS for a Pu-doped glass illustrate the small actinide N{sub 4}/N{sub 5} intensity ratio and show that the Pu-N{sub 4,5} white line cross section is comparable to that of Gd M{sub 4,5}.
Date: July 1, 1996
Creator: Fortner, J.A.; Buck, E.C.; Ellison, A.J.G. & Bates, J.K.
Partner: UNT Libraries Government Documents Department

Z-Contrast STEM Imaging and EELS of CdSe Nanocrystals: Towards the Analysis of Individual Nanocrystal Surfaces

Description: We have applied Atomic Number Contract Scanning Transmission Electron Microscopy (Z-Contrast STEM) and STEM/EELS (Electron Energy Loss Spectroscopy) towards the study of colloidal CdSe semiconductor nanocrystals embedded in MEH-PPV polymer films. Unlike the case of conventional phase-contrast High Resolution TEM, Z-Contrast images are direct projections of the atomic structure. Hence they can be interpreted without the need for sophisticated image simulation and the image intensity is a direct measure of the thickness of a nanocrystal. Our thickness measurements are in agreement with the predicted faceted shape of these nanocrystals. Our unique 1.3A resolution STEM has successfully resolve3d the sublattice structure of these CdSe nanocrystals. In [010] projection (the polar axis in the image plane) we can distinguish Se atom columns from Cd columns. Consequently we can study the effects of lattice polarity on the nanocrystal morphology. Furthermore, since the STEM technique does not rely on diffraction, it is superbly suited to the study of non-periodic detail, such as the surface structure of the nanocrystals. EELS measurements on individual nanocrystals indicate a significant amount (equivalet to 0.5-1 surface monolayers) of oxygen on the nanocrystals, despite processing in an inert atmosphere. Spatially resolved measurements at 7A resolution suggest a surface oxide layer. However, the uncertainty in the measurement precludes definitive assignment at this time. The source of the oxygen is under investigation as well.
Date: April 5, 1999
Creator: Erwin, M.; Kadavanich, A. V.; Kippeny, T.; Pennycook, S. J. & Rosenthal, S. J.
Partner: UNT Libraries Government Documents Department

Atomic-resolution characterization of interface structure and chemistry in the STEM

Description: Combination of Z-contrast imaging and EELS (electron energy loss spectroscopy) allows the local structure and chemistry of interfaces to be determined on the atomic scale. In this paper, these two complementary techniques are used to analyze the structure and chemistry of a nominally 25 degree [100] symmetric tilt boundary in an electroceramic SrTiO{sub 3} bicrystal.
Date: March 1, 1994
Creator: Browning, N. D.; McGibbon, M. M.; McGibbon, A. J.; Chisholm, M. F.; Pennycook, S. J.; Ravikumar, V. et al.
Partner: UNT Libraries Government Documents Department

Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials

Description: In this program, we developed new theoretical and experimental insights into understanding the relationships among fundamental universality and scaling phenomena, the solid-state physical and mechanical properties of materials, and the volume plasmon energy as measured by electron energy-loss spectroscopy (EELS). Particular achievements in these areas are summarized as follows: (i) Using a previously proposed physical model based on the universal binding-energy relation (UBER), we established close phenomenological connections regarding the influence of the valence electrons in materials on the longitudinal plasma oscillations (plasmons) and various solid-state properties such as the optical constants (including absorption and dispersion), elastic constants, cohesive energy, etc. (ii) We found that carbon materials, e.g., diamond, graphite, diamond-like carbons, hydrogenated and amorphous carbon films, exhibit strong correlations in density vs. Ep (or maximum of the volume plasmon peak) and density vs. hardness, both from available experimental data and ab initio DFT calculations. This allowed us to derive a three-dimensional relationship between hardness and the plasmon energy, that can be used to determine experimentally both hardness and density of carbon materials based on measurements of the plasmon peak position. (iii) As major experimental accomplishments, we demonstrated the possibility of in-situ monitoring of changes in the physical properties of materials with conditions, e.g., temperature, and we also applied a new plasmon ratio-imaging technique to map multiple physical properties of materials, such as the elastic moduli, cohesive energy and bonding electron density, with a sub-nanometer lateral resolution. This presents new capability for understanding material behavior. (iv) Lastly, we demonstrated a new physical phenomenon - electron-beam trapping, or “electron tweezers” - of a solid metal nanoparticle inside a liquid metal. This phenomenon is analogous to that of optical trapping of solid microparticles in solution known as "optical tweezers", which is currently being used to manipulate molecules and inorganic materials in a ...
Date: May 9, 2013
Creator: Howe, James M.
Partner: UNT Libraries Government Documents Department

Experimental Benchmarking of Pu Electronic Structure

Description: The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy [1], x-ray absorption spectroscopy [1,2,3,4], electron energy loss spectroscopy [2,3,4], Fano Effect measurements [5], and Bremstrahlung Isochromat Spectroscopy [6], including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples. [2,3,6]
Date: October 13, 2005
Creator: Tobin, J G; Moore, K T; Chung, B W; Wall, M A; Schwartz, A J; Ebbinghaus, B B et al.
Partner: UNT Libraries Government Documents Department

ATOMIC SCALE CHARACTERIZATION OF OXYGEN VACANCY DYNAMICS BY IN SITU REDUCTION AND ANALYTICAL ATOMIC RESOLUTION STEM.

Description: In this study, we present nano-scale investigations of point defect dynamics in perovskite oxides by correlated atomic resolution high angle annular dark field imaging (HAADF) and electron energy loss spectroscopy (EELS). The point defect dynamics and interactions during in-situ reduction in the microscope column are analyzed. In particular, oxygen vacancy creation, diffusion and clustering are studied, as oxygen vacancies comprise the majority of the point defects present in these perovskite oxide systems [1]. The results have been acquired using the JEOL2010F, a STEM/TEM, equipped with a 200 keV field emission gun, a high angle annular dark field detector and a post column Gatan imaging filter (GIF). The combination of the Z-contrast and EELS techniques [2] allows us to obtain direct images (spatial resolution of 2 {angstrom}) of the atomic structure and to correlate this information with the atomically resolved EELS information (3s acquisition time, 1.2 eV energy resolution). In-situ heating of the material is performed in a Gatan double tilt holder with a temperature range of 300 K-773 K at an oxygen partial pressure of P{sub O{sub 2}} = 5 * 10{sup -8} Pa.
Date: August 4, 2002
Creator: KLIE,R.F.; BROWNING,N.D. & ZHU,Y.
Partner: UNT Libraries Government Documents Department

Determination of atomic structure at surfaces and interfaces by high-resolution stem

Description: It is over 100 y since Lord Rayleigh first showed the differences between coherent and incoherent imaging in the light microscope, pointing out the advantages of the latter for resolution and image interpretation. The annular detector in the high-resolution STEM provides the same advantages for electrons, allowing incoherent imaging at atomic resolution, with image contrast strongly dependent on atomic number (Z). Since incoherent imaging has no phase problem, these Z-contrast images may be directly inverted to given the (projected) atomic positions. A maximum entropy method avoids false detail associated with direct deconvolution, and gives atomic coordinates to an accuracy of {+-}0.1{Angstrom}. Electron energy loss spectroscopy can provide valuable complementary information on light element bonding and the presence of impurities in specific atomic planes selected from the image. Together, these techniques have revealed some surprisingly complex interfacial structures. For surface studies, the 1.3{Angstrom} probe of the VG Microscopes HB603U STEM provides sufficient penetration and contrast to image single Pt and Rh atoms on {gamma}-alumina supports. Such images reveal preferred atomic configurations and allow possible surface adsorption sites to be deduced.
Date: December 31, 1996
Creator: Pennycook, S.J.; Chisholm, M.F.; Nellist, P.D.; Browning, N.D.; Wallis, D.J. & Dickey, E.C.
Partner: UNT Libraries Government Documents Department

Determination of the 3-dimensional atomic structure at internal interfaces by electron energy loss spectroscopy

Description: The fine structure of a core-loss edge contains detailed information on the local atomic environment. It can be used as an extremely sensitive probe of the fluctuations in structure and bonding that can occur at internal interfaces. Interpretation of such fluctuations requires only a knowledge of the location of the electron probe when the spectrum is acquired and a means of interpreting the spectrum. The location of the probe can be controlled with atomic precision in the STEM by the use of the Z-contrast image, while the real space cluster methodology of multiple scattering analysis is ideally suited to the task of interpretation. This approach is used here to derive 3-dimensional models for tilt grain boundaries in TiO{sub 2} and SrTiO{sub 3}.
Date: January 1, 1997
Creator: Browning, N.D.; Wallis, D.J. & Pennycook, S.J.
Partner: UNT Libraries Government Documents Department

Pulsed-Laser Deposited Amorphous Diamond and Related Materials: Synthesis, Characterization, and Field Emission Properties

Description: Amorphous carbon films with variable sp{sup 3} content were produced by ArF (193nm) pulsed laser deposition. An in-situ ion probe was used to measure kinetic energy of C{sup +} ions. In contrast to measurements made as a function of laser fluence, ion probe measurements of kinetic energy are a convenient as well as more accurate and fundamental method for monitoring deposition conditions, with the advantage of being readily transferable for inter-laboratory comparisons. Electron energy loss spectroscopy (EELS) and spectroscopic ellipsometry measurements reveal that tetrahedral amorphous carbon (ta-C) films with the most diamond-like properties are obtained at the C ion kinetic energy of {approximately}90 eV. Film properties are uniform within a 12-15{degree} angle from the plume centerline. Tapping-mode atomic force microscope measurements show that films deposited at near-optimum kinetic energy are extremely smooth, with rms roughness of only {approximately} 1 {angstrom} over distances of several hundred nm. Field emission (FE) measurements show that ta-C does not appear to be a good electron emitter. After conditioning of ta-C films deposited on n-type Si a rather high turn-on voltage of {approximately}50 V/{micro}m was required to draw current of {approximately}1 nA to the probe. The emission was unstable and typically ceased after a few minutes of operation. The FE tests of ta-C and other materials strongly suggest that surface morphology plays a dominant role in the FE process, in agreement with conventional Fowler-Nordheim theory.
Date: January 23, 1999
Creator: Baylor, L.R.; Geohegan, D.B.; Jellison, G.E., Jr.; Lowndes, D.H.; Merkulov, V.I. & Puretzky, A.A.
Partner: UNT Libraries Government Documents Department

Development of a Fundamental Understanding of Chemical Bonding and Electronic Structure in Spinel Compounds

Description: This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos national Laboratory (LANL). Hundreds of ceramic compounds possess the spinel crystal structure and exhibit a remarkable variety of properties, ranging from compounds that are electrical insulators to compounds that are superconducting, or from compounds with ferri- and antiferromagnetic behavior to materials with colossal magnetoresistive characteristics. The unique crystal structure of spinel compounds is in many ways responsible for the widely varying physical properties of spinels. The objective of this project is to investigate the nature of chemical bonding, point defects, and electronic structure in compounds with the spinel crystal structure. Our goal is to understand and predict the stability of the spinel structure as a function of chemical composition, stoichiometry, and cation disorder. The consequences of cation disorder in spinel materials can be profound . The ferromagnetic characteristics of magnesioferrite, for instance, are entirely attributable to disorder on the cation sublattices. Our studies provide insight into the mechanisms of point defect formation and cation disorder and their effects on the electronic band structure and crystal structure of spinel-structure materials. our ultimate objective is to develop a more substantive knowledge of the spinel crystal structure and to promote new and novel uses for spinel compounds. The technical approach to achieve our goals is to combine first-principles calculations with experimental measurements. The structural and electronic properties of spinel samples were experimentally determined primarily with X-ray and neutron scattering, optical and X-ray absorption, and electron energy-loss spectroscopy. Total energy electronic structure calculations were performed to determine structural stability, band structure, density of states, and electron distribution. We also used shell-model total -energy calculations to assess point-defect formation and migration energies in magnesio-aluminate spinel.
Date: May 14, 1999
Creator: Sickafus, K.E.; Wills, J.M.; Chen, S.-P.; Terry, J.H., Jr.; Hartmann, T. & Sheldon, R.I.
Partner: UNT Libraries Government Documents Department

Atomic Resolution Microscopy of Semiconductor Defects and Interfaces

Description: The optical arrangement of the scanning transmission electron microscope (STEM) allows formation of incoherent images by use of a large annular detector. Here we show this capability in the imaging of defects in GaN and the interfacial region of an Au/GaAs ohmic contact. A resolution of around 0.15 nm is attained. Such Z-contrast images show strong atomic number contrast and allow the probe to be positioned accurately at the defect or interface for the purpose of performing high spatial resolution electron energy-loss spectroscopy (EELS).
Date: June 17, 1999
Creator: Baca, A.G.; Browning, N.D.; James, E.M; Reno, J.L. & Xin, Y.
Partner: UNT Libraries Government Documents Department

Development of a Fundamental Understanding of Chemical Bonding and Electronic Structure in Spinel Compounds

Description: This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Hundreds of ceramic compounds possess the spinel crystal structure and exhibit a remarkable variety of properties, ranging from compounds that are electrical insulators to compounds that are superconducting, or from compounds with ferri- and antiferromagnetic behavior to materials with colossal magnetoresistive characteristics. The unique crystal structure of spinel compounds is in many ways responsible for the widely varying physical properties of spinels. The objective of this project is to investigate the nature of chemical bonding, point defects, and electronic structure in compounds with the spinel crystal structure. Our goal is to understand and predict the stability of the spinel structure as a function of chemical composition, stoichiometry, and cation disorder. The consequences of cation disorder in spinel materials can be profound . The ferromagnetic characteristics of magnesioferrite, for instance, are entirely attributable to disorder on the cation sublattices. Our studies provide insight into the mechanisms of point defect formation and cation disorder and their effects on the electronic band structure and crystal structure of spinel-structure materials. Our ultimate objective is to develop a more substantive knowledge of the spinel crystal structure and to promote new and novel uses for spinel compounds. The technical approach to achieve our goals is to combine first-principles calculations with experimental measurements. The structural and electronic properties of spinel samples were experimentally determined primarily with X-ray and neutron scattering, optical and X-ray absorption, and electron energy-loss spectroscopy. Total energy electronic structure calculations were performed to determine structural stability, band structure, density of states, and electron distribution. We also used shell-model total -energy calculations to assess point-defect formation and migration energies in magnesio-aluminate spinel.
Date: June 3, 1999
Creator: Sickafus, K.E.; Wills, J.M.; Chen, S.-P.; Terry, J.H., Jr.; Hartmann, T. & Sheldon, R.I.
Partner: UNT Libraries Government Documents Department

Study of Chromium-Doped Diamond-Like Carbon by Z-Contrast Imaging and Electron Energy Loss Spectroscopy

Description: Metal-doped diamond-like carbon films were produced for the purpose of an electrochemical nano-electrode. In this study we use Z-contrast scanning transmission electron microscopy to directly observe metal cluster formation and distributions within the chromium-doped carbon films. At low doping ({approximately}6at%Cr), Cr is uniformly distributed; at high doping ({approximately}12at%Cr), Cr-rich clusters are formed. Using electron energy loss spectroscopy, we find that the Cr clusters tend to be metallic-like at low doping levels and carbide-like at high doping levels according to the Cr L, white line ratios. The carbon is more diamond-like at low doping and more graphite/carbide like at high doping according to the sp1/sp3 electron percentage measurements.
Date: November 29, 1999
Creator: Fax, X.; Dickey, E.C. & Pennycook, S.J.
Partner: UNT Libraries Government Documents Department

Local Probe into the Atomic Structure of Metallic Glasses using EELS

Description: Electron energy loss spectroscopy (EELS) is used to extract information on the topological arrangement of atoms around Pd in the bulk-glass-forming Pd{sub 60}Ni{sub 20}P{sub 20}. It is found that the environment around Pd in the glass is only a slight modification of the Pd crystalline structure. However, the modification is enough to allow this alloy to form a glass in bulk. In examining the differences between the structure of crystalline Pd and glassy Pd{sub 60}Ni{sub 20}P{sub 20} it is concluded that incorporation of Ni and P into the structure frustrates the structure enough that glass formation becomes easy.
Date: November 30, 1999
Creator: Alamgir, F.M. & Ito, Y. Schwarz, R.B.
Partner: UNT Libraries Government Documents Department

Direct experimental determination of the atomic structure at internal interfaces

Description: A crucial first step in understanding the effect that internal interfaces have on the properties of materials is the ability to determine the atomic structure at the interface. As interfaces can contain atomic disorder, dislocations, segregated impurities and interphases, sensitivity to all of these features is essential for complete experimental characterization. By combining Z-contrast imaging and electron energy loss spectroscopy (EELS) in a dedicated scanning transmission electron microscope (STEM), the ability to probe the structure, bonding and composition at interfaces with the necessary atomic resolution has been obtained. Experimental conditions can be controlled to provide, simultaneously, both incoherent imaging and spectroscopy. This enables interface structures observed in the image to be interpreted intuitively and the bonding in a specified atomic column to be probed directly by EELS. The bonding and structure information can then be correlated using bond-valence sum analysis to produce structural models. This technique is demonstrated for 25{degrees}, 36{degrees} and 67{degrees} symmetric and 45{degrees} and 25{degrees} asymmetric [001] tilt grain boundaries in SrTiO{sub 3} The structures of both types of boundary were found to contain partially occupied columns in the boundary plane. From these experimental results, a series of structural units were identified which could be combined, using continuity of gain boundary structure principles, to construct all [001] tilt boundaries in SrTiO{sub 3}. Using these models, the ability of this technique to address the issues of vacancies and dopant segregation at grain boundaries in electroceramics is discussed.
Date: July 1, 1995
Creator: Browning, N.D. & Pennycook, S.J.
Partner: UNT Libraries Government Documents Department

Manufacturing diamond films using copper vapour lasers

Description: Fifty nanosecond pulses of visible light have been used to produce hard, hydrogen-free diamond-like-carbon (DLC) films at irradiances between 5 x 10{sup 8} and 5 x 10{sup 10} W/cm{sup 2} The films were characterized by a number of techniques including: Raman spectroscopy, Electron Energy Loss Spectroscopy (EELS), atomic force microscopy, and spectroscopic ellipsometry. The cost for manufacturing DLC with high average power, high-pulse repetition frequency, visible light is low enough to compete with other diamond thin film production methods.
Date: January 8, 1996
Creator: McLean, M., LLNL
Partner: UNT Libraries Government Documents Department