3,879 Matching Results

Search Results

Advanced search parameters have been applied.

Energy transfer in ZnO-anthracene hybrid structure

Description: This article investigates the origin of the modification of the emission properties of the hybrid structure using temperature dependent and time-dependent photoluminescence spectroscopy.
Date: April 4, 2012
Creator: Shimada, Ryoko; Urban, Ben E.; Sharma, Mamta; Singh, Akhilesh; Avrutin, Vitaliy; Morkoç, Hadis et al.
Partner: UNT College of Arts and Sciences

Radiolysis of Organic Fluids, Annual Progress Report: October 1, 1961-September 30, 1962

Description: From introduction: This report reviews the Susie program (particularly reactor dosimetry and data analysis) as well as other items that represent a smaller share of the total effort.
Date: January 15, 1963
Creator: Bolt, R. O.; Burrous, M. L.; Carroll, J. G.; Hall, K. L.; Sweeney, M. A. & Tobriner, M. W.
Partner: UNT Libraries Government Documents Department

Hindrance of the Myosin Power Stroke Posed by the Proximity to the Troponin Complex Identified Using a Novel LRET Fluorescent Nanocircuit

Description: A novel luminescence resonance energy transfer (LRET) nanocircuit assay involving a donor and two acceptors in tandem was developed to study the dynamic interaction of skeletal muscle contraction proteins. The donor transmits energy relayed to the acceptors distinguishing myosin subfragment-1 (S1) lever arm orientations. The last acceptor allows the detection of S1's bound near or in between troponin complexes on the thin filament. Additionally, calcium related changes between troponin T and myosin were detected. Based on this data, the troponin complex situated every 7 actin monomers, hinders adjacently bound myosins to complete their power stroke; whereas myosins bound in between troponin complexes undergo complete power strokes.
Date: May 2007
Creator: Coffee Castro-Zena, Pilar G.
Partner: UNT Libraries

Conformational Studies of Myosin and Actin with Calibrated Resonance Energy Transfer

Description: Resonance energy transfer was employed to study the conformational changes of actomyosin during ATP hydrolysis. To calibrate the technique, the parameters for resonance energy transfer were defined. With conformational searching algorithms to predict probe orientation, the distances measured by resonance energy transfer are highly consistent with the atomic models, which verified the accuracy and feasibility of resonance energy transfer for structural studies of proteins and oligonucleotides. To study intramyosin distances, resonance energy transfer probes were attached to skeletal myosin's nucleotide site, subfragment-2, and regulatory light chain to examine nucleotide analog-induced structural transitions. The distances between the three positions were measured in the presence of different nucleotide analogs. No distance change was considered to be statistically significant. The measured distance between the regulatory light chain and nucleotide site was consistent with either the atomic model of skeletal myosin subfragment-1 or an average of the three models claimed for different ATP hydrolysis states, which suggested that the neck region was flexible in solution. To examine the participation of actin in the powerstroke process, resonance energy transfer between different sites on actin and myosin was measured in the presence of nucleotide analogs. The efficiencies of energy transfer between myosin catalytic domain and actin were consistent with the actoS1 docking model. However, the neck region was much closer to the actin filament than predicted by static atomic models. The efficiency of energy transfer between Cys 374 and the regulatory light chain was much greater in the presence of ADP-AlF4, ADP-BeFx, and ADP-vanadate than in the presence of ADP or no nucleotide. These data detect profound differences in the conformations of the weakly and strongly attached crossbridges which appear to result from a conformational selection that occurs during the weak binding of the myosin head to actin. The resonance energy transfer data exclude a number ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2000
Creator: Xu, Jin
Partner: UNT Libraries

Ionization of Water Clusters is Mediated by Exciton Energy Transfer from Argon Clusters

Description: The exciton energy deposited in an argon cluster, (Arn ,< n=20>) using VUV radiation is transferred to softly ionize doped water clusters, ((H2O)n, n=1-9) leading to the formation of non-fragmented clusters. Following the initial excitation, electronic energy is channeled to ionize the doped water cluster while evaporating the Ar shell, allowing identification of fragmented and complete water cluster ions. Examination of the photoionization efficiency curve shows that cluster evaporation from excitons located above 12.6 eV are not enough to cool the energized water cluster ion, and leads to their dissociation to (H2O)n-2H+ (protonated) clusters.
Date: January 25, 2012
Creator: Golan, Amir & Ahmed, Musahid
Partner: UNT Libraries Government Documents Department

Luminescence Resonance Energy Transfer-Based Modeling of Troponin in the Presence of Myosin and Troponin/Tropomyosin Defining Myosin Binding Target Zones in the Reconstituted Thin Filament

Description: Mechanistic details on the regulation of striated muscle contraction still need to be determined, particularly the specific structural locations of the elements comprising the thick and thin filaments. Of special interest is the location of the regulatory component, troponin, on the actin filament and how its presence influences the behavior of myosin binding to the thin filament. In the present study: (1) Luminescence resonance energy transfer was used to monitor potential conformational changes in the reconstituted thin filament between the C-terminal region of troponin T and myosin subfragment 1; (2) Location of troponin in previously derived atomic models of the acto-myosin complex was mapped to visualize specific contacts; and (3) Shortened tropomyosin was engineered and protein binding and ATPase assays were performed to study the effect of myosin binding close to the troponin complex. Analysis of the results suggest the following: (1) Irrespective of calcium levels, the C-terminal region of troponin T is located close to myosin loop 3 and a few actin helices that may perturb strong acto-myosin interactions responsible for force production. (2) Atomic models indicate myosin subfragment 1 cannot attain the post- powerstroke state due to the full motion of the lever arm being sterically hindered by troponin. (3) A shortened tropomyosin with five actin binding modules (instead of the native seven in muscle cells) binds actin contiguously in a head-to-tail manner and serves to increase the periodicity of troponin complexes on the actin filament. Such behavior eliminates the structure of the actin filament being responsible for the binding location of tropomyosin. (4) Differential behavior of myosin subfragment 1 i.e. (a) binding adjacent to troponin and (b) binding further away from troponin, is apparent as tropomyosin and troponin appear to govern the regions or "target zones" where myosin can bind productively along the actin filament. Physiologically, myosins ...
Date: May 2009
Creator: Patel, Dipesh A.
Partner: UNT Libraries

Observation of resonant energy transfer between identical-frequency laser beams

Description: Enhanced transmission of a low intensity laser beam is observed when crossed with an identical-frequency beam in a plasma with a flow velocity near the ion sound speed. The time history of the enhancement and the dependence on the flow velocity strongly suggest that this is due to energy transfer between the beams via a resonant ion wave with zero frequency in the laboratory frame. The maximum energy transfer has been observed when the beams cross in a region with Mach 1 flow. The addition of frequency modulation on the crossing beams is seen to reduce the energy transfer by a factor of two. Implications for indirect-drive fusion schemes are discussed.
Date: December 9, 1998
Creator: Afeyan, B. B.; Cohen, B. I.; Estabrook, K. G.; Glenzer, S. H.; Joshi, C.; Kirkwood, R. K. et al.
Partner: UNT Libraries Government Documents Department

Energy transfer properties and mechanisms. Technical progress report

Description: Collisional energy transfer is the controlling factor in many nonequilibrium chemical systems: combustion, laser-induced chemical reactions, shock-heated gases, atmospheric chemistry, etc. During this period, efforts were made in 3 areas: large molecule energy transfer experiments (organic compounds); triatomic V-T/R energy transfer (memory effects); and energy transfer in extreme environments (shock tube data on norbornene). Results are described very briefly.
Date: February 3, 1995
Creator: Barker, J.R.
Partner: UNT Libraries Government Documents Department

Screening and Degradation Tests of Linear-Polymer Additives for District Heating Applications

Description: In closed-loop district heating and cooling (DHC) systems, the addition of a friction-reducing additive to the working fluid conveying energy between the energy sources and end users would allow increased load-handling capability (in an existing system) or the use of much smaller pipes and/or pumps (in a new system). As the first step in identifying friction-reducing additives that have a reasonable lifetime at DHC temperatures, two high-molecular-weight linear-polymer additives have been tested at two different temperatures (25.0 C and 87.8 C). The additives are Polyox WSR-301 and Separan AP-273 at 200 wppm in deionized water. Results of capillary tube screening tests with fresh solutions show that both polymers can give more than 60% friction reduction. However, Separan is effective at high temperatures, whereas Polyox undergoes thermal degradation. Degradation tests in a closed recirculatory flow system show that (1) friction reduction is always accompanied by heat transfer reduction regardless of the hours of shear, (2) Polyox cannot be used in recirculatory systems because it is very sensitive to mechanical degradation, and (3) although Separan does degrade under high flow shear conditions, it does not degrade completely; it achieves a plateau value of friction reduction even under continuous shear. This is an important discovery and implies that Separan is still a good candidate for closed-loop DH systems.
Date: December 1987
Creator: Choi, U. S.; Cho, Young I. & Kasza, Kenneth Edmund
Partner: UNT Libraries Government Documents Department

Predicted Heat-Transfer Performance of an Evacuated Glass-Jacketed CPC Receiver : Countercurrent Flow Design

Description: The heat-transfer performance of an evacuated glass-jacketed CPC-receiver facility, free on one end and fixed onto the glass jacket at the other, was carried out using heat-transfer relationships and the best information available in the literature. Specifically, the collector examined was a 3x-CPC facility, 8 ft long, with an entrance aperture 4.5 in. wide covered with a single glass cover, and provided with an aluminum reflecting surface (rho = 0.88). To maximize heat retention, a selectively treated receiver surface, epsilon = 0.11, was used. The optical efficiency of this CPC collector facility was calculated to be eta₀ = 0.536.
Date: May 1976
Creator: Thodos, George
Partner: UNT Libraries Government Documents Department

Analysis of Heat-Pipe Absorbers in Evacuated-Tube Solar Collectors

Description: Heat transfer in evacuated-tube solar collectors with heat-pipe absorbers is compared with that for similar collectors with flow-through absorbers. In systems that produce hot water or other heated fluids, the heat-pipe absorber suffers a heat transfer penalty compared with the flow-through absorber, but in many cases the penalty can be minimized by proper design at the heat-pipe condenser and system manifold. The heat transfer penalty decreases with decreasing collector heat loss coefficient, suggesting that evacuated tubes with optical concentration are more appropriate for use with heat pipes than evacuated or non-evacuated flat-plate collectors. When the solar collector is used to drive an absorption chiller, the heat-pipe absorber has better heat transfer characteristics than the flow-through absorbers.
Date: February 1986
Creator: Hull, John R.; Schertz, William W. & Allen, John W.
Partner: UNT Libraries Government Documents Department

A General Model for Turbulent Momentum and Heat Transport in Liquid Metals

Description: This report develops a general single-point closure scheme for calculating the local levels of turbulent fluxes of momentum and heat in liquid-metal flows. Transport effects are accounted for by way of the three scalar quantities: turbulent kinetic energy; turbulence-energy dissipation rate; and scalar energy (or half the mean temperature variance). Their values at any point in the flow are obtained from the solution of conservation equations of transport type for each of the three quantities. The turbulent momentum fluxes (Reynolds stresses) and heat-transport rates are then obtained from the algebraic formulas containing the above scalar quantities and the mean velocity and temperature fields.
Date: March 1979
Creator: Sha, William T. & Launder, Brian E.
Partner: UNT Libraries Government Documents Department

A Model for Turbulent Momentum and Heat Transport in Large Rod Bundles

Description: A quasi-continuum model for turbulent momentum and heat transport in large rod bundles has been developed. This model has been derived from a sub-channel analysis and adapted to a quasi-continuum form by introducing concepts of porosity and distributed resistance. The effects of turbulent kinetic energy generation due to shear, viscosity, diffusion, geometric effects, buoyancy, and Reynolds number are explicitly included. The proposed model of turbulence is relatively simple, yet it is believed to provide a framework for taking account of important turbulent mechanisms in rod bundles.
Date: January 1979
Creator: Sha, William T. & Launder, Brian E.
Partner: UNT Libraries Government Documents Department

Boiling Heat Transfer of Refrigerant R-113 in a Small-Diameter, Horizontal Tube

Description: Results of a study of boiling heat transfer from refrigerant R-113 in a small-diameter (2.92-mm) tube are reported. Local heat transfer coefficients over a range of heat fluxes, mass fluxes, and equilibrium mass qualities were measured. The measured coefficients were used to evaluate eight different heat transfer correlations, some of which have been developed specifically for refrigerants. High heat fluxes and low flow rates are inherent in small channels, and this combination results in high boiling numbers. The high boiling number of the collected data shows that the nucleation mechanism was dominant. As a result, the two-phase correlations that predicted this dominance also predicted the data best if they also properly modeled the physical parameters. The correlations of Lazarek and Black and of Shah, as modified in this study, predicted the data very well. It is also shown that a simple form, suggested by Stephan and Abdelsalam for nucleate boiling, correlates the data equally well. This study is part of a research program in multiphase flow and heat transfer, with the overall objective of developing validated design correlations and predictive methods that will facilitate the design and optimization of compact heat exchangers for use with environmentally acceptable alternatives for chlorofluorocarbon (CFC) refrigerants and refrigerant mixtures.
Date: January 1992
Creator: Wambsganss, M. W.; France, D. M.; Jendrzejczyk, J. A. & Tran, T. N.
Partner: UNT Libraries Government Documents Department

Energy Transfer of Excitons Between Quantum Wells Separated by a Wide Barrier

Description: We present a microscopic theory of the excitonic Stokes and anti-Stokes energy transfer mechanisms between two widely separated unequal quantum wells with a large energy mismatch ({Delta}) at low temperatures (T). Exciton transfer through dipolar coupling, photon-exchange coupling and over-barrier ionization of the excitons through exciton-exciton Auger processes are examined. The energy transfer rate is calculated as a function of T and the center-to-center distance d between the two wells. The rates depend sensitively on T for plane-wave excitons. For located excitons, the rates depend on T only through the T-dependence of the localization radius.
Date: December 6, 1999
Partner: UNT Libraries Government Documents Department

Importance of electronic relaxation for inter-coulombic decay in aqueous systems

Description: Inspired by recent photoelectron spectroscopy (PES) experiments on hydroxide solutions, we have examined the conditions necessary for enhanced (and, in the case of solutions, detectable) intercoulombic decay (ICD)--Auger emission from an atomic site other than that originally excited. We present general guidelines, based on energetic and spatial overlap of molecular orbitals, for this enhancement of ICDbased energy transfer in solutions. These guidelines indicate that this decay process should be exhibited by broad classes of biomolecules and suggest a design criterion for targeted radiooncology protocols. Our findings show that PES cannot resolve the current hydroxide coordination controversy.
Date: October 1, 2010
Creator: Schwartz, Craig P.; Fatehi, Shervin; Saykally, Richard J. & Prendergast, David
Partner: UNT Libraries Government Documents Department

Synthesis and Studies of Wide-Band Capturing BODIPY-Fullerene Based Donor-Acceptor Systems

Description: Artificial photosynthesis is the process, which mimics the natural photosynthesis process in order to convert solar energy to chemical energy. This process can be separated into four parts, which are antenna system, reaction center, water oxidation center, and proton reduction center. If we only focus on the ‘antenna system and reaction center' modules, expanding the absorption band in antenna system and generating long-lived charge separated state in reaction center are two fantastic strategies to design the molecules in order to improve the efficiency of the artificial photosynthesis process. In the first work of this dissertation, mono-18-crown-6 and mono-ammonium binding strategy was used to connect BODIPY- C60 supramolecular based donor–acceptor conjugates. The meso- position of BODIPY was modified by benzo-18-crown-6, and the 3, 5 methyl positions were replaced by two styryl groups, which covered additional donor (triphenylamine or 10-methylphenothiazine). The acceptor is a fulleropyrrolidine derivative, which included an ethyl ammonium cation. The absorbance wavelengths of the donor covered 300-850 nm, which is the visible/near IR region (wide band capturing). The ultrafast charge separation and relatively slow charge recombination was found from femtosecond transient absorption study. Next, a ‘two point' bis-18-crown-6 and bis-ammonium binding strategy was utilized to link BODIPY- C60 supramolecular based donor–acceptor conjugates. In this case, the meso- position of the BODIPY was modified by a secondary donor (triphenylamine, phenothiazine, or ferrocene). And the 3, 5 methyl positions were replaced by two styryl groups, which included benzo-18-crown-6. The acceptor (fulleropyrrolidine) was functionalized by bis-alky ammonium cations. The absorbance/ fluorescence emission titration and computational studies supported that the ‘two-point' strategy has stronger binding than ‘one-point' strategy. The relatively slow charge separation was found in these donor-acceptor conjugates. To extend the second work, a pristine BODIPY was linked to the meso- position of the BODIPY-bis-benzo-18-crown-6. When the acceptor (C60-bis- ammonium) was added ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2020
Creator: Shao, Shuai
Partner: UNT Libraries

Intramolecular Charge and Energy Transfer in Multichromophoric Aromatic Systems

Description: A concerted experimental and computational study of energy transfer in nucleic acid bases and charge transfer in dialkylaminobenzonitriles, and related electron donor-acceptor molecules, indicate that the ultrafast photoprocesses occur through three-state conical interactions involving an intermediate state of biradical character.
Date: September 9, 2008
Creator: Lim, Edward C.
Partner: UNT Libraries Government Documents Department

Emittance growth of an electron beam in a periodic focusing channel due to transfer of longitudinal energy to transverse energy

Description: Most discussions about emittance growth and halo production for an intense electron beam in a periodic focusing channel assume that the total transverse energy is constant (or, in other words, that the transverse and longitudinal Hamiltonians are separable). Previous analyses that include variations in the total transverse energy are typically based on a transverse-longitudinal coupling that is either from two-dimensional space-charge modes or particle-particle Coulomb collisions. With the space-charge modes, the energy exchange between the transverse and longitudinal directions is periodic, and of constant magnitude. The total energy transfer for the case of the Coulomb collisions is negligible. This limited increase of energy in the transverse direction from these other effects will limit the amount of transverse emittance growth possible. In this paper, the authors investigate a mechanism in which there is a continual transfer of energy from the longitudinal direction to the transverse direction, leading to essentially unlimited potential transverse emittance growth. This mechanism is caused by an asymmetry of the beam`s betatron motion within the periodic focusing elements. This analysis is based on thermodynamic principles. This mechanism exists for both solenoids and quadrupole focusing, although only solenoid focusing is studied here.
Date: December 31, 1998
Creator: Carlsten, B. E.
Partner: UNT Libraries Government Documents Department

Singular eigenfunctions for shearing fluids I

Description: The authors construct singular eigenfunctions corresponding to the continuous spectrum of eigenvalues for shear flow in a channel. These modes are irregular as a result of a singularity in the eigenvalue problem at the critical layer of each mode. They consider flows with monotonic shear, so there is only a single critical layer for each mode. They then solve the initial-value problem to establish that these continuum modes, together with any discrete, growing/decaying pairs of modes, comprise a complete basis. They also view the problem within the framework of Hamiltonian theory. In that context, the singular solutions can be viewed as the kernel of an integral, canonical transformation that allows us to write the fluid system, an infinite-dimensional Hamiltonian system, in action-angle form. This yields an expression for the energy in terms of the continuum modes and provides a means for attaching a characteristic signature (sign) to the energy associate with each eigenfunction. They follow on to consider shear-flow stability within the Hamiltonian framework. Next, the authors show the equivalence of integral superpositions of the singular eigenfunctions with the solution derived with Laplace transform techniques. In the long-time limit, such superpositions have decaying integral averages across the channel, revealing phase mixing or continuum damping. Under some conditions, this decay is exponential and is then the fluid analogue of Landau damping. Finally, the authors discuss the energetics of continuum damping.
Date: February 1, 1995
Creator: Balmforth, N.J. & Morrison, P.J.
Partner: UNT Libraries Government Documents Department

Preliminary design for Arctic atmospheric radiative transfer experiments

Description: If current plans are realized, within the next few years, an extraordinary set of coordinated research efforts focusing on energy flows in the Arctic will be implemented. All are motivated by the prospect of global climate change. SHEBA (Surface Energy Budget of the Arctic Ocean), led by the National Science Foundation (NSF) and the Office of Naval Research (ONR), involves instrumenting an ice camp in the perennial Arctic ice pack, and taking data for 12--18 months. The ARM (Atmospheric Radiation Measurement) North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) focuses on atmospheric radiative transport, especially in the presence of clouds. The NSA/AAO CART involves instrumenting a sizeable area on the North Slope of Alaska and adjacent waters in the vicinity of Barrow, and acquiring data over a period of about 10 years. FIRE (First ISCCP [International Satellite Cloud Climatology Program] Regional Experiment) Phase 3 is a program led by the National Aeronautics and Space Administration (NASA) which focuses on Arctic clouds, and which is coordinated with SHEBA and ARM. FIRE has historically emphasized data from airborne and satellite platforms. All three program anticipate initiating Arctic data acquisition during spring, 1997. In light of his historic opportunity, the authors discuss a strawman atmospheric radiative transfer experimental plan that identifies which features of the radiative transport models they think should be tested, what experimental data are required for each type of test, the platforms and instrumentation necessary to acquire those data, and in general terms, how the experiments could be conducted. Aspects of the plan are applicable to all three programs.
Date: April 1, 1995
Creator: Zak, B.D.; Church, H.W.; Stamnes, K.; Shaw, G.; Filyushkin, V.; Jin, Z. et al.
Partner: UNT Libraries Government Documents Department