34 Matching Results

Search Results

Advanced search parameters have been applied.

Robust Planning for Autonomous Navigation of Mobile Robots in Unstructured, Dynamic Environments: An LDRD Final Report

Description: This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Robust Planning for Autonomous Navigation of Mobile Robots In Unstructured, Dynamic Environments (AutoNav)''. The project goal was to develop an algorithmic-driven, multi-spectral approach to point-to-point navigation characterized by: segmented on-board trajectory planning, self-contained operation without human support for mission duration, and the development of appropriate sensors and algorithms to navigate unattended. The project was partially successful in achieving gains in sensing, path planning, navigation, and guidance. One of three experimental platforms, the Minimalist Autonomous Testbed, used a repetitive sense-and-re-plan combination to demonstrate the majority of elements necessary for autonomous navigation. However, a critical goal for overall success in arbitrary terrain, that of developing a sensor that is able to distinguish true obstacles that need to be avoided as a function of vehicle scale, still needs substantial research to bring to fruition.
Date: August 1, 2002
Creator: EISLER, G. RICHARD
Partner: UNT Libraries Government Documents Department

Robotic Mobile Manipulation Experiments at the U.S. Army Maneuver Support Center

Description: This activity brought two robotic mobile manipulation systems developed by Sandia National Laboratories to the Maneuver Support Center (MANSCEN) at Ft. Leonard Wood for the following purposes: Demonstrate advanced manipulation and control capabilities; Apply manipulation to hazardous activities within MANSCEN mission space; Stimulate thought and identify potential applications for future mobile manipulation applications; and Provide introductory knowledge of manipulation to better understand how to specify capability and write requirements.
Date: June 1, 2002
Creator: BENNETT, PHIL C. & ANDERSON, ROBERT J.
Partner: UNT Libraries Government Documents Department

Obstacle detection for autonomous navigation : an LDRD final report.

Description: This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled 'Obstacle Detection for Autonomous Navigation'. The principal goal of this project was to develop a mathematical framework for obstacle detection. The framework provides a basis for solutions to many complex obstacle detection problems critical to successful autonomous navigation. Another goal of this project was to characterize sensing requirements in terms of physical characteristics of obstacles, vehicles, and terrain. For example, a specific vehicle traveling at a specific velocity over a specific terrain requires a sensor with a certain range of detection, resolution, field-of-view, and sufficient sensitivity to specific obstacle characteristics. In some cases, combinations of sensors were required to distinguish between different hazardous obstacles and benign terrain. In our framework, the problem was posed as a multidimensional, multiple-hypothesis, pattern recognition problem. Features were extracted from selected sensors that allow hazardous obstacles to be distinguished from benign terrain and other types of obstacles. Another unique thrust of this project was to characterize different terrain classes with respect to both positive (e.g., rocks, trees, fences) and negative (e.g., holes, ditches, drop-offs) obstacles. The density of various hazards per square kilometer was statistically quantified for different terrain categories (e.g., high desert, ponderosa forest, and prairie). This quantification reflects the scale, or size, and mobility of different types of vehicles. The tradeoffs between obstacle detection, position location, path planning, and vehicle mobility capabilities were also to be characterized.
Date: March 1, 2004
Creator: Padilla, Denise D.
Partner: UNT Libraries Government Documents Department

A collision avoidance system for workpiece protection

Description: This paper describes an application of Sandia`s non-contact capacitive sensing technology for collision avoidance during the manufacturing of rocket engine thrust chambers. The collision avoidance system consists of an octagon shaped collar with a capacitive proximity sensor mounted on each face. The sensors produced electric fields which extend several inches from the face of the collar and detect potential collisions between the robot and the workpiece. A signal conditioning system processes the sensor output and provides varying voltage signals to the robot controller for stopping the robot.
Date: April 1, 1995
Creator: Schmitt, D.J.; Weber, T.M.; Novak, J.L. & Maslakowski, J.E.
Partner: UNT Libraries Government Documents Department

Path planning for complex terrain navigation via dynamic programming

Description: This work considers the problem of planning optimal paths for a mobile robot traversing complex terrain. In addition to the existing obstacles, locations in the terrain where the slope is too steep for the mobile robot to navigate safely without tipping over become mathematically equivalent to extra obstacles. To solve the optimal path problem, the authors use a dynamic programming approach. The dynamic programming approach utilized herein does not suffer the difficulties associated with spurious local minima that the artificial potential field approaches do. In fact, a globally optimal solution is guaranteed to be found if a feasible solution exists. The method is demonstrated on several complex examples including very complex terrains.
Date: December 31, 1998
Creator: Kwok, K. S. & Driessen, B. J.
Partner: UNT Libraries Government Documents Department

A summary of the GPS system performance for STARS Mission 3

Description: This paper describes the performance of the GPS system on the most recent flight of the STARS missile, STARS Mission 3 (M3). This mission was conducted under the Ballistic Missile Defense Organization`s (BMDO`s) Consolidated Targets Program. The United States Army Space and Strategic Defense Command (USASSDC) is the executing agent for this mission and the Department of Energy`s (DOE`s) Sandia National Laboratories (SNL) is the vehicle developer and integrator. The M3 flight, dually designated as the MSX Dedicated Targets II (MDT-II) mission occurred on August 31, 1996. This mission was conducted for the specific purpose of providing targets for viewing by the MSX satellite. STARS M3 was the first STARS flight to use GPS-derived data for missile guidance, and proved to be instrumental in the procurement of a wealth of experimental data which is still undergoing analysis by numerous scientific agencies within the BMDO complex. GPS accuracy was required for this mission because of the prescribed targeting requirements for the MDT-II payload deliveries with respect to the MSX satellite flight path. During the flight test real time GPS-derived state vector data was also used to generate pointing angles for various down range sensors involved in the experiment. Background information describing the STARS missile, GPS subsystem architecture, and the GPS Kalman filter design is presented first, followed by a discussion of the telemetry data records obtained from this flight with interpretations and conclusions.
Date: August 1, 1997
Creator: Creel, E.E.
Partner: UNT Libraries Government Documents Department

A cost-effective adverse-weather precision guidance system

Description: This SAND report documents the results of an LDRD project undertaken to study the accuracy of terrain-aided navigation coupled with highly accurate topographic maps. A revolutionary new mapping technology, interferometric synthetic aperture radar (IFSAR), has the ability to make terrain maps of extremely high accuracy and spatial resolution, more than an order of magnitude better than currently available DMA map products. Using a laser altimeter and the Sandia Labs Twin Otter Radar Testbed, fix accuracies of less than 3 meters CEP were obtained over urban and natural terrain regions.
Date: August 1, 1995
Creator: Fellerhoff, R. & Burgett, S.
Partner: UNT Libraries Government Documents Department

High performance robotic traverse of desert terrain.

Description: This report presents tentative innovations to enable unmanned vehicle guidance for a class of off-road traverse at sustained speeds greater than 30 miles per hour. Analyses and field trials suggest that even greater navigation speeds might be achieved. The performance calls for innovation in mapping, perception, planning and inertial-referenced stabilization of components, hosted aboard capable locomotion. The innovations are motivated by the challenge of autonomous ground vehicle traverse of 250 miles of desert terrain in less than 10 hours, averaging 30 miles per hour. GPS coverage is assumed to be available with localized blackouts. Terrain and vegetation are assumed to be akin to that of the Mojave Desert. This terrain is interlaced with networks of unimproved roads and trails, which are a key to achieving the high performance mapping, planning and navigation that is presented here.
Date: September 1, 2004
Creator: Whittaker, William (Carnegie Mellon University, Pittsburgh, PA)
Partner: UNT Libraries Government Documents Department

Precision guided parachute LDRD final report

Description: This report summarizes the results of the Precision Guided Parachute LDRD, a two year program at Sandia National Laboratories which developed a Global Positioning System (GPS) guided parachute capable of autonomous flight and landings. A detailed computer model of a gliding parachute was developed for software only simulations. A hardware in-the-loop simulator was developed and used for flight package system integration and design validation. Initial parachute drop tests were conducted at Sandia`s Coyote Canyon Cable Facility, followed by a series of airdrops using Ross Aircraft`s Twin Otter at the Burris Ranch Drop Zone. Final flights demonstrated in-flight wind estimation and the capability to fly a commanded heading. In the past, the cost and logistical complexity of an initial navigation system ruled out actively guiding a parachute. The advent of the low-cost, light-weight Global Positioning System (GPS) has eliminated this barrier. By using GPS position and velocity measurements, a guided parachute can autonomously steer itself to a targeted point on the ground through the use of control drums attached to the control lanyards of the parachute. By actively correcting for drop point errors and wind drift, the guidance accuracy of this system should be on the order of GPS position errors. This would be a significant improvement over unguided airdrops which may have errors of a mile or more.
Date: July 1, 1996
Creator: Gilkey, J.C.
Partner: UNT Libraries Government Documents Department

Control of Multiple Robotic Sentry Vehicles

Description: As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.
Date: April 1, 1999
Creator: Feddema, J.; Klarer, P. & Lewis, C.
Partner: UNT Libraries Government Documents Department

The ALEXIS mission recovery

Description: The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.
Date: March 1, 1994
Creator: Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C. et al.
Partner: UNT Libraries Government Documents Department

Sensor guided control and navigation with intelligent machines. Final technical report

Description: This item constitutes the final report on ''Visionics: An integrated approach to analysis and design of intelligent machines.'' The report discusses dynamical systems approach to problems in robust control of possibly time-varying linear systems, problems in vision and visually guided control, and, finally, applications of these control techniques to intelligent navigation with a mobile platform. Robust design of a controller for a time-varying system essentially deals with the problem of synthesizing a controller that can adapt to sudden changes in the parameters of the plant and can maintain stability. The approach presented is to design a compensator that simultaneously stabilizes each and every possible mode of the plant as the parameters undergo sudden and unexpected changes. Such changes can in fact be detected by a visual sensor and, hence, visually guided control problems are studied as a natural consequence. The problem here is to detect parameters of the plant and maintain st ability in the closed loop using a ccd camera as a sensor. The main result discussed in the report is the role of perspective systems theory that was developed in order to analyze such a detection and control problem. The robust control algorithms and the visually guided control algorithms are applied in the context of a PUMA 560 robot arm control where the goal is to visually locate a moving part on a mobile turntable. Such problems are of paramount importance in manufacturing with a certain lack of structure. Sensor guided control problems are extended to problems in robot navigation using a NOMADIC mobile platform with a ccd and a laser range finder as sensors. The localization and map building problems are studied with the objective of navigation in an unstructured terrain.
Date: March 26, 2001
Creator: Ghosh, Bijoy K.
Partner: UNT Libraries Government Documents Department

Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

Description: A stabilization and propulsion system comprising a series of loop-coils arranged in parallel rows wherein two rows form a magnetic rail. Levitation and lateral stability is provided when the induced field in the magnetic rails interacts with the superconducting magnets (SCM) mounted on the magnetic levitation vehicle. A multiphase propulsion system interconnects specific coils in a given magnetic rail and interacts with the SCM to produce a propulsion force to the vehicle.
Date: December 31, 1994
Creator: He, J. & Rote, D.M.
Partner: UNT Libraries Government Documents Department

Cooperative Robot Teams Applied to the Site Preparation Task

Description: Prior to human missions to Mars, infrastructures on Mars that support human survival must be prepared. robotic teams can assist in these advance preparations in a number of ways. This paper addresses one of these advance robotic team tasks--the site preparation task--by proposing a control structure that allows robot teams to cooperatively solve this aspect of infrastructure preparation. A key question in this context is determining how robots should make decisions on which aspect of the site preparation t6ask to address throughout the mission, especially while operating in rough terrains. This paper describes a control approach to solving this problem that is based upon the ALLIANCE architecture, combined with performance-based rough terrain navigation that addresses path planning and control of mobile robots in rough terrain environments. They present the site preparation task and the proposed cooperative control approach, followed by some of the results of the initial testing of various aspects of the system.
Date: June 15, 2001
Creator: Parker, LE
Partner: UNT Libraries Government Documents Department

Fusion of LADAR with SAR for precision strike

Description: This paper presents a concept for fusing 3-dimensional image reconnaissance data with LADAR imagery for aim point refinement. The approach is applicable to fixed or quasi-fixed targets. Quasi-fixed targets are targets that are not expected to be moved between the time of reconnaissance and the time of target engagement. The 3-dimensional image data is presumed to come from standoff reconnaissance assets tens to hundreds of kilometers from the target area or acquisitions prior to hostilities. Examples are synthetic aperture radar (SAR) or stereoprocessed satellite imagery. SAR can be used to generate a 3-dimensional map of the surface through processing of data acquired with conventional SAR acquired using two closely spaced, parallel reconnaissance paths, either airborne or satellite based. Alternatively, a specialized airborne SAR having two receiving antennas may be used for data acquisition. The data sets used in this analysis are: (1) LADAR data acquired using a Hughes-Danbury system flown over a portion of Kirtland AFB during the period September 15--16, 1993; (2) two pass interferometric SAR data flown over a terrain-dominated area of Kirtland AFB; (3) 3-dimensional mapping of an urban-dominated area of the Sandia National Laboratories and adjacent cultural area extracted from aerial photography by Vexcel Corporation; (4) LADAR data acquired at Eglin AFB under Wright Laboratory`s Advanced Technology Ladar System (ATLAS) program using a 60 {mu}J, 75 KHz Co{sub 2} laser; and (5) two pass interferometric SAR data generated by Sandia`s STRIP DCS (Data Collection System) radar corresponding to the ATLAS LADAR data. The cultural data set was used in the urban area rather than SAR because high quality interferometric SAR data were not available for the urban-type area.
Date: March 1, 1995
Creator: Cress, D.H. & Muguira, M.R.
Partner: UNT Libraries Government Documents Department

A low-cost, high-resolution, video-rate imaging optical radar

Description: Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.
Date: April 1, 1998
Creator: Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F.; Grantham, J.W. & Monson, T.
Partner: UNT Libraries Government Documents Department

Laser systems for the generation of sodium layer guide stars

Description: Laser generated guide stars in the mesosphere at 90 km provide an effective beacon for adaptive optics schemes which compensate the effects of atmospheric turbulence. This report discusses the attributes of the laser systems which are desirable from a point of view of overall adaptive optics system performance and operation ease.
Date: March 5, 1996
Creator: Friedman, H.; Erbert, G.; Kuklo, T.; Salmon, T.; Thompson, G.; Wong, N. et al.
Partner: UNT Libraries Government Documents Department

Characteristics and development report for the SA3871 Intent Controller application specific integrated circuit (ASIC)

Description: This report describes the design and development activities that were involved in the SA3871 Intent Controller ASIC. The SA3871 is a digital gate array component developed for the MC4396 Trajectory Sensing Signal Generator for use in the B61-3/4/10 system as well as a possible future B61-MAST system.
Date: August 1, 1995
Creator: Simpson, R.L. & Meyer, B.T.
Partner: UNT Libraries Government Documents Department