155 Matching Results

Search Results

Advanced search parameters have been applied.

The streaming potential of liquid carbon dioxide in BreaSandstone

Description: We report here, for the first time, evolution of the streaming potential coupling coefficient as liquid carbon dioxide infiltrates Berea sandstone. Using 125 Omega-m tap water, the coupling coefficient determined before and after each CO2 flood of five samples averaged approximately -30 mV/0.1 MPa. After liquid CO2 passed through the specimens displacing all mobile pore water, trapped water remained and the coupling coefficient was approximately -3 mV/0.1 MPa. A bound water limit of the coupling coefficient for liquid CO2 flow was found using an air-dried sample to be -0.02 mV/0.1 MPa. For initially water-saturated samples, bulk resistivity varied during CO2 invasion from 330 Ohm-m, to 150 Ohm-m during CO2/water mixing, to a final value of 380 Ohm-m. Results suggest that trapped and bound water control electrical conduction and the electrokinetic response. Applications include monitoring CO2 injectate in subsurface reservoirs using the self potential method.
Date: October 1, 2004
Creator: Moore, J.; Glaser, S.; Morrison, F. & Hoversten, G.M.
Partner: UNT Libraries Government Documents Department

Electrokinetic Power Generation from Liquid Water Microjets

Description: Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.
Date: February 15, 2008
Creator: Duffin, Andrew M. & Saykally, Richard J.
Partner: UNT Libraries Government Documents Department

Quantum Suppression of beamstrahlung for future linearcolliders

Description: Beamstrahhmg at interaction point may present severe lim- itations on linear collider performance. The approach to re- duce this effect adopted for all current designs at 0.5 TeV will become more difficult and less effective at higher en- ergy. We discuss the feasibility of an alternative approach, based on an effect known as quantum suppression of beam- strahlung, for future linear colliders at multi-TeV energy.
Date: June 1, 1998
Creator: Xie, Ming
Partner: UNT Libraries Government Documents Department


Description: The limitations of previously performed or suggested electrodynamic cutoff experiments are reviewed, and an electron-electron scattering experiment to be performed with storage rings to investigate further the limits of the validity of quantum electrodynamics is described. The foreseen experimental problems are discussed, and the results of the associated calculations are given. The parameters and status of the equipment are summarized. (D.C.W.)
Date: June 1, 1959
Creator: Barber, W. C.; Richter, B.; Panofsky, W. K. H.; O'Neill, G. K. & Gittelman, B.
Partner: UNT Libraries Government Documents Department

Radiation of Electron in the Field of Plane Light Wave

Description: Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity.
Date: February 24, 2006
Creator: Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; /Kharkov, KIPT; Tatchyn, R. et al.
Partner: UNT Libraries Government Documents Department

Microwave to millimeter-wave electrodynamic response and applications of semiconductor nanostructures: LDRD project 67025 final report.

Description: Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.
Date: November 1, 2006
Creator: Shaner, Eric Arthur; Lee, Mark; Averitt, R. D. (Los Alamos National Laboratory); Highstrete, Clark; Taylor, A. J. (Los Alamos National Laboratory); Padilla, W. J. (Los Alamos National Laboratory) et al.
Partner: UNT Libraries Government Documents Department

Quantum-Classical Correspondence in Nonrelativistic Electrodynamics

Description: A form of classical electrodynamic field exists which gives exact agreement with the operator field of quantum electrodynamics (QED) for the Lamb shift of a harmonically bound point electron. Here it is pointed out that this form of classical theory with its physically acceptable interpretation is the result of an unconventional resolution of a mathematically ambiguous term in classical field theory. Finally a quantum-classical correspondence principle is shown to exist in the sense that the classical field and expectation value of the QED operator field are identical if retardation is neglected in the latter.
Date: October 14, 1999
Creator: Ritchie, A.B. & Weatherford, C.A.
Partner: UNT Libraries Government Documents Department

RF/microwave properties of nanotubes and nanowires : LDRD Project 105876 final report.

Description: LDRD Project 105876 was a research project whose primary goal was to discover the currently unknown science underlying the basic linear and nonlinear electrodynamic response of nanotubes and nanowires in a manner that will support future efforts aimed at converting forefront nanoscience into innovative new high-frequency nanodevices. The project involved experimental and theoretical efforts to discover and understand high frequency (MHz through tens of GHz) electrodynamic response properties of nanomaterials, emphasizing nanowires of silicon, zinc oxide, and carbon nanotubes. While there is much research on DC electrical properties of nanowires, electrodynamic characteristics still represent a major new frontier in nanotechnology. We generated world-leading insight into how the low dimensionality of these nanomaterials yields sometimes desirable and sometimes problematic high-frequency properties that are outside standard model electron dynamics. In the cases of silicon nanowires and carbon nanotubes, evidence of strong disorder or glass-like charge dynamics was measured, indicating that these materials still suffer from serious inhomogeneities that limit there high frequency performance. Zinc oxide nanowires were found to obey conventional Drude dynamics. In all cases, a significant practical problem involving large impedance mismatch between the high intrinsic impedance of all nanowires and nanotubes and high-frequency test equipment had to be overcome.
Date: September 1, 2009
Creator: Scrymgeour, David; Lee, Mark; Hsu, Julia W. P. & Highstrete, Clark
Partner: UNT Libraries Government Documents Department

Experimental observation of plasma formation and current transfer in fine wire expansion experiments.

Description: When several kA pulses are passed through single, fine 25 {micro}m diameter wires, the wire material heats, melts, vaporizes and expands. Initially the voltage across--and current through--a wire increases until an abrupt voltage collapse occurs. After this collapse the voltage remains at a relative small value while the current continues to increase. In order to understand how this early time behavior may affect the subsequent implosion, small-scale experiments at Cornell University's Laboratory of Plasma Studies concentrated on diagnosing expanding single wire dynamics. X-ray backlighting, interferometry and Schlieren imaging as well as current and voltage measurements have been employed. The voltage collapse has been attributed to the formation of plasma around the wire and a transfer of current to this highly conducting coronal plasma. Interferometry has confirmed the plasma formation, but the current transfer has only been postulated. Subsequent experiments on the Z-Facility at Sandia National Laboratories have produced impressive x-ray yields etc.
Date: May 1, 2003
Creator: Deeney, Christopher E.; Duselis, Peter U. (Cornell University, Ithaca, NY); Kusse, Bruce & Sinars, Daniel Brian
Partner: UNT Libraries Government Documents Department

High power couplers for Project X

Description: Project X, a multi-megawatt proton source under development at Fermi National Accelerator Laboratory. The key element of the project is a superconducting (SC) 3GV continuous wave (CW) proton linac. The linac includes 5 types of SC accelerating cavities of two frequencies.(325 and 650MHz) The cavities consume up to 30 kW average RF power and need proper main couplers. Requirements and approach to the coupler design are discussed in the report. New cost effective schemes are described. Results of electrodynamics and thermal simulations are presented.
Date: March 1, 2011
Creator: Kazakov, S.; Champion, M.S.; Yakovlev, V.P.; Kramp, M.; Pronitchev, O.; Orlov, Y. et al.
Partner: UNT Libraries Government Documents Department

Multipole Analysis of Circular Cylindircal Magnetic Systems

Description: This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a ''Fourier series-like'' expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an alternative to the Elliptic integral formulation. In fact, anywhere that an Elliptic integral appears, one can replace it with its corresponding Q-function representation. A number of problems, using the toroidal expansion formulation, are analyzed and compared to existing known methods in order to validate the results. Also, the equivalent multipole distribution is found for most of the solved problems along with its corresponding physical interpretation. The main application is to characterize the external magnetic field due to a six-pole permanent magnet motor in terms of its equivalent multipole distribution.
Date: January 9, 2006
Creator: Selvaggi, J
Partner: UNT Libraries Government Documents Department


Description: This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2005 to December 31, 2005 which covers the third six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, Morehouse continued to obtain additional mean mass measurements for biomass particles employing the gravimetric technique measurement system that was set up in the last reporting period. Simultaneously, REM, our subcontractor, has obtained raw data for surface area, volume, and drag coefficient to mass ratio (C{sub d}/m) information for several biomass particles employing the electrodynamic balance (EDB) measurement system that was calibrated in the last reporting period. Preliminary results of the mean mass and the shape data obtained are reported here, and more data collection is in progress.
Date: January 1, 2006
Creator: Sampath, Ramanathan
Partner: UNT Libraries Government Documents Department


Description: This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period January 01, 2006 to June 30, 2006 which covers the fourth six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, Morehouse completed obtaining additional mean mass measurements for biomass particles employing the gravimetric technique measurement system that was set up in a previous reporting period. Simultaneously, REM, our subcontractor, has completed obtaining raw data for surface area, volume, and drag coefficient to mass ratio (Cd/m) information for 9 more biomass particles employing the electrodynamic balance (EDB) measurement system that was calibrated before in this project. Results of the mean mass data obtained to date are reported here, and analysis of the raw data collected by REM is in progress.
Date: June 30, 2006
Creator: Sampath, Ramanathan
Partner: UNT Libraries Government Documents Department

Photonic equation of motion with application to the Lamb shift

Description: A photonic equation of motion is proposed which is the scalar product of four-vectors and therefore a Lorentz invariant. A photonic equation of motion, which has not been heretofore established in quantum electrodynamics (QED), would capture the quantum nature of light but yet not have the standard field-operator form, thereby making practical calculations easier to perform. The equation of motion proposed here is applied to the Lamb shift. No divergences exist, and the result agrees with the observed Lamb shift for the 1S{sub 1/2} state of hydrogen within experimental error.
Date: December 21, 2006
Creator: Ritchie, A B
Partner: UNT Libraries Government Documents Department

Seismoelectric Phenomena in Fluid-Saturated Sediments

Description: Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study this electrokinetic (EK) effect are described and outcomes for studies of seismoelectric phenomena in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves, and (2) the electromagnetic wave produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores--this feature is characteristic of poroelastic (Biot) media, but not predicted by either viscoelastic fluid or solid models. A model of plane-wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both sand and glass microspheres.
Date: April 22, 2005
Creator: Block, G I & Harris, J G
Partner: UNT Libraries Government Documents Department

Binary electrokinetic separation of target DNA from background DNA primers.

Description: This report contains the summary of LDRD project 91312, titled ''Binary Electrokinetic Separation of Target DNA from Background DNA Primers''. This work is the first product of a collaboration with Columbia University and the Northeast BioDefense Center of Excellence. In conjunction with Ian Lipkin's lab, we are developing a technique to reduce false positive events, due to the detection of unhybridized reporter molecules, in a sensitive and multiplexed detection scheme for nucleic acids developed by the Lipkin lab. This is the most significant problem in the operation of their capability. As they are developing the tools for rapidly detecting the entire panel of hemorrhagic fevers this technology will immediately serve an important national need. The goal of this work was to attempt to separate nucleic acid from a preprocessed sample. We demonstrated the preconcentration of kilobase-pair length double-stranded DNA targets, and observed little preconcentration of 60 base-pair length single-stranded DNA probes. These objectives were accomplished in microdevice formats that are compatible with larger detection systems for sample pre-processing. Combined with Columbia's expertise, this technology would enable a unique, fast, and potentially compact method for detecting/identifying genetically-modified organisms and multiplexed rapid nucleic acid identification. Another competing approach is the DARPA funded IRIS Pharmaceutical TIGER platform which requires many hours for operation, and an 800k$ piece of equipment that fills a room. The Columbia/SNL system could provide a result in 30 minutes, at the cost of a few thousand dollars for the platform, and would be the size of a shoebox or smaller.
Date: October 1, 2005
Creator: James, Conrad D. & Derzon, Mark Steven
Partner: UNT Libraries Government Documents Department

Fundamental role of the retarded potential in the electrodynamics of superluminal sources: reply to comment

Description: Neither Eq. (6.52) of Jackson [Classical Electrodynamics, 3rd ed. (Wiley, 1999)], or Hannay's derivation of that dquation in the preceding Comment [J. Opt. Soc. Am. A, ... (2009)], are applicable to a source whose distribution pattern moves faster than light in vacuo with nonzero acceleration. It is assumed in Hannay's derivation that the retarded distribution of the density of any moving source would be smooth and differentiable if its rest-frame distribution is. By working out an explicit example of a rotating superluminal source with a bounded and smooth density profile, we show that this assumption is erroneous. The retarded distribution of a rotating source with a moderate superluminal speed is, in general, spread over three disjoint volumes (differing in shape from each other and from the volume occupied by the source in its rest frame) whose boundaries depend on the spacetime position of the observer. Hannay overlooks the fact that the limits of integration in his expression for the retarded potential (which delineate the boundaries of the retarded distribution of the source) are not differentiable functions of the coordinates of the observer at those points on the source boundary that approach the observer, along the radiation direction, with the speed of light at the retarded time. In the superluminal regime, derivatives of the integral representing the retarded potential are well defined only as generalized functions.
Date: January 1, 2009
Creator: Singleton, John; Fasel, Joseph H; Schmidt, Andrea C; Ardavan, Houshang & Ardavan, Arzhang
Partner: UNT Libraries Government Documents Department