827 Matching Results

Search Results

Advanced search parameters have been applied.

Quarterly report April 1 - June 30, 1997 [ARPA TRP turboalternator development]

Description: This is a quarterly report of CALSTART's progress with their programs. Their overall objectives remain: (1) efficiently and responsible management of the program and; (2) assist in the commercialization of the technology by doing the following: identifying potential strategic partners; explaining need and value of turbogenerator; reach important audiences for AlliedSignal; showcase technology at key conferences/briefings; raise technology profile via custom Web information; and extend AlliedSignal turbogenerator outreach efforts.
Date: May 12, 1998
Partner: UNT Libraries Government Documents Department

Department of Energy electric and hybrid vehicle site operator program at Pacific Gas and Electric Company. Final report

Description: Pacific Gas & Electric Company continues to expand an EV program that addresses the following: vehicle development and demonstration; vehicle technology assessment; infrastructure evaluation; participation in EV organizations; and meetings and events. This report highlights PG & E`s activities in each of these areas.
Date: October 1, 1997
Partner: UNT Libraries Government Documents Department

Results of electric vehicle safety issues survey: Conducted on behalf of ad hoc EV battery readiness working group in-vehicle safety sub-working group

Description: This report documents the results of a survey conducted in the winter of 1994-1995 by the In-Vehicle Safety Sub-Working Group, a working subunit of the DOE-sponsored ad hoc EV Battery Readiness Working Group. The survey was intended to determine the opinions of a group of industry experts regarding the relative importance of a list of some 39 potential safety concerns, grouped into 8 broad areas related to electric vehicles and their battery systems. Participation in the survey was solicited from the members of the Battery Readiness Working Group, along with members of the SAE EV Battery Safety Issues Task Force and selected other knowledgeable individuals. Results of the survey questionnaire were compiled anonymously from the 38 individuals who submitted responses. For each of the issues, survey respondents ranked them as having high, medium or low importance in each of three areas: the severity of events involving this concern, the probability that such events will occur, and the likelihood that mitigating action for such events may be needed beyond normal practices. The accumulated responses from this ranking activity are tabulated, and the response totals are also provided by several subgroupings of respondents. Additionally, large numbers of written comments were provided by respondents, and these are summarized with numbers of responses indicated. A preliminary statistical analysis of the tabulated results was performed but did not provide a satisfactory ranking of the concerns and has not been included in this report. A list is provided of the 15 concerns which a majority of the respondents indicated could be of both medium-to-high severity and medium-to-high probability of occurrence. This list will be reviewed by the Safety Sub-Working Group to determine the status of actions being taken by industry or government to mitigate these concerns, and the likelihood that additional research, standards development or regulation ...
Date: June 1, 1996
Creator: Hunt, G.L.
Partner: UNT Libraries Government Documents Department

PHEV Market Introduction Workshop Summary Report

Description: The Plug-In Hybrid Electric Vehicle (PHEV) Market Introduction Study Workshop was attended by approximately forty representatives from various stakeholder organizations. The event took place at the Hotel Helix in Washington, D.C. on December 1-2, 2008. The purpose of this workshop was to follow-up last year s PHEV Value Proposition Study, which showed that indeed, a viable and even thriving market for these vehicles can exist by the year 2030. This workshop aimed to identify immediate action items that need to be undertaken to achieve a successful market introduction and ensuing large market share of PHEVs in the U.S. automotive fleet.
Date: March 1, 2009
Creator: Weber, Adrienne M & Sikes, Karen R
Partner: UNT Libraries Government Documents Department

Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study

Description: Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.
Date: July 1, 1997
Creator: Vyas, A.D.; Ng, H.K.; Anderson, J.L. & Santini, D.J.
Partner: UNT Libraries Government Documents Department

Evaluation of SAFT America, Inc. electrochemical capacitors

Description: The electrochemical capacitor devices described in this report were deliverables from Lawrence Berkeley National Laboratory (LBNL), Contract No. 4606510 with SAFT America, Inc., as part of LBNL`s exploratory research program. Dr. Kimio Kinoshita is the Program Manager at LBNL. The contract was in support of the US Department of Energy`s (DOE) exploratory electrochemical energy storage program which includes development projects for a wide variety of advanced high-energy/high-power energy storage systems for electric and hybrid vehicle programs. The DOE is currently developing various electrochemical capacitors as candidate power assist devices for the Partnership for a New Generation of Vehicles (PNGV) fast-response engine requirements. The LBNL contract with SAFT America, Inc., was intended to evaluate various activated carbon-based electrode formulations and develop an electrical model of the double-layer capacitor. The goal is to design and deliver prototypes meeting the DOE requirement of > 1,000 W/kg, 16 Wh/kg. Deliverables were sent to the INEEL EST laboratory for independent testing and evaluation. The following report describes performance testing on ten devices received September 2, 1996. Due to the initial performance of these early devices, life-cycle testing was not conducted. Additional devices, with improved performance, are expected to be tested. Future results will be reported in a follow-on report.
Date: December 1, 1997
Creator: Wright, R.B. & Murphy, T.C.
Partner: UNT Libraries Government Documents Department

Comparison of indirect cost multipliers for vehicle manufacturing

Description: In the process of manufacturing and selling vehicles, a manufacturer incurs certain costs. Among these costs are those incurred directly as a part of manufacturing operations and those incurred indirectly in the processes of manufacturing and selling. The indirect costs may be production-related, such as R and D and engineering; business-related, such as corporate staff salaries and pensions; or retail-sales-related, such as dealer support and marketing. These indirect costs are recovered by allocating them to each vehicle. Under a stable, high-volume production process, the allocation of these indirect costs can be approximated as multipliers (or factors) applied to the direct cost of manufacturing. A manufacturer usually allocates indirect costs to finished vehicles according to a corporation-specific pricing strategy. Because the volumes of sales and production vary widely by model within a corporation, the internal corporate percent allocation of various accounting categories (such as profit or corporate overheat) can vary widely among individual models. Approaches also vary across corporations. For these purposes, an average value is constructed, by means of a generic representative method, for vehicle models produced at high volume. To accomplish this, staff at Argonne National Laboratory's (ANL's) Center for Transportation Research analyzed the conventional vehicle cost structure and developed indirect cost multipliers for passenger vehicles. This memorandum summarizes the results of an effort to compare and put on a common basis the cost multipliers used in ANL's electric and hybrid electric vehicle cost estimation procedures with those resulting from two other methodologies. One of the two compared methodologies is derived from a 1996 presentation by Dr. Chris Borroni-Bird of Chrysler Corporation, the other is by Energy and Environmental Analysis, Inc. (EEA), as described in a 1995 report by the Office of Technology Assessment (OTA), Congress of the United States. The cost multipliers are used for scaling the component ...
Date: May 16, 2000
Creator: Vyas, A.; Santini, D. & Cuenca, R.
Partner: UNT Libraries Government Documents Department

Costs of lithium-ion batteries for vehicles

Description: One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.
Date: August 21, 2000
Creator: Gaines, L. & Cuenca, R.
Partner: UNT Libraries Government Documents Department

Year Four, 104th Congress, 3rd quarter report, January 1, 1995--March 31, 1995. DOE/KEURP Site Operator Program

Description: Kansas State University is participating in the Department of Energy`s Electric Vehicle Site Operator Program. Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations an opportunity to examine the latest EHV prototypes under actual operating conditions.
Date: June 1, 1995
Partner: UNT Libraries Government Documents Department

Electric and hybrid vehicle program, site operator program quarterly progress report for April through June 1996 (third quarter of fiscal year 1996)

Description: The US Department of Energy (DOE) Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. The goals of the Site Operator Program include the field evaluation of electric vehicles (EVs) in real-world applications and environments; the advancement of electric vehicle technologies; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of EVs by the public. The Site Operator Program currently consists of eleven participants under contract and two other organizations that have data-sharing agreements with the Program (Table ES-1). Several national organizations have joined DOE to further the introduction and awareness of electric vehicles, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for electric vehicles; and (2) DOE, the Department of Transportation, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of electric vehicles. The current focus of the Program is the collection and dissemination of EV operations and performance data to aid in the evaluation of real-world EV use. This report contains several sections with vehicle evaluation as a focus.
Date: January 1, 1997
Creator: Francfort, J.; Bassett, R.R. & Briasco, S.
Partner: UNT Libraries Government Documents Department

Multilevel Inverters for Electric Vehicle Applications

Description: This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.
Date: October 22, 1998
Creator: Habetler, T.G.; Peng, F.Z. & Tolbert, L.M.
Partner: UNT Libraries Government Documents Department

DOE/KEURP Site Operator Program year 5 first quarter report, July 1-- September 30, 1995

Description: Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy` s Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU now has two electric cars. Both are electric conversion vehicles from Soleq Corporation out of Chicago. KSU in conjunction with KEURP also initiated procurement for the purchase of four (4) Chevy S-10 pickup trucks. Since the supplier, GE-Spartan, canceled its effort concerning the production of vehicles other appropriate sources were sought. Today, K-State and the Kansas Utilities are working with Troy Design and Manufacturing (TDM), Redford, Michigan. TDM is working with Ford Motor Company and expects to become the first certified electric vehicle Quality Vehicle Modifier (QVM). Kansas State has entered into an agreement to assist TDM in supporting the infrastructure and technical manual development for these vehicles. The Soleq EVcorts have not been signed to illustrate to the public that it is an electric vehicle. Magnetic signs have been made for special functions to ensure sponsor support is recognized and acknowledged. As soon as TDM`s Ford Ranger electric vehicles are delivered they will be used throughout the state by utility companies that are participating with K-State`s Site Operator Program.
Date: December 1, 1995
Partner: UNT Libraries Government Documents Department

Electric and hybrid vehicle program site operator program. Quarterly progress report, October 1994--December 1994 (First quarter of FY-95)

Description: The DOE Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. Its mission now includes three ma or activity categories: (1) Advancement of Electric Vehicle (EV) technologies, (2) Development of infrastructure elements needed to support significant EV use, and (3) Increasing public awareness and acceptance of EVs. The 13 Program participants, their geographic locations, and the principal thrusts of their efforts are identified in Table ES-1. The EV inventories of each participant are summarized in Table ES-2.
Date: July 1995
Creator: Kiser, D. M. & Brown, H. L.
Partner: UNT Libraries Government Documents Department

Highway vehicle electric drive in the United States : 2009 status and issues.

Description: The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.
Date: February 16, 2011
Creator: Santini, D. J. & Systems, Energy
Partner: UNT Libraries Government Documents Department

Development and Testing of an UltraBattery-Equipped Honda Civic

Description: The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).
Date: April 1, 2012
Creator: Karner, Donald
Partner: UNT Libraries Government Documents Department

The prospects for electric and hybrid electric vehicles: Second-stage results of a two-stage Delphi study

Description: This study was conducted to collect information for a technical and economic assessment of electric (EV) and hybrid (HEV) vehicles. The first-stage worldwide survey was completed in fall 1994, while the second-stage was completed by summer 1995. The paper reports results from the second round of the survey and major differences between the two rounds. This second-stage international survey obtained information from 93 expert respondents from the automotive technology field. Key results: EVs will penetrate the market first, followed by internal combustion engine HEVs, while gas turbine and fuel cell HEVs will come after 2020. By 2020, EVs and internal combustion engine HEVs will have a 15% share of the new vehicle market; they will also cost 18-50% more and will be slightly inferior to 1993 gasoline cars. AC induction motor is projected to be superior to DC and DC brushless motors by 2020, although the DC motor will be less expensive in 2000. DC brushless motors are projected to be the most expensive. Though generally declining, battery costs will remain high. EVs are believed to be effective in reducing urban emissions; however, their costs must be reduced drastically. Petroleum is expected to be the predominant fuel for hybrid vehicles through 2020. Mean energy equivalent fuel economy of electric drivetrain vehicles is projected to be 20-40% greater than for conventional vehicles in 2000, and to rise a few percents during the projection period. Respondents anticipate only a 16% increase in conventional vehicle fuel economy from 2000 to 2020.
Date: August 1, 1996
Creator: Ng, H.K.; Anderson, J.L.; Santini, D.J. & Vyas, A.D.
Partner: UNT Libraries Government Documents Department

Computer modeling in the design and evaluation of electric and hybrid vehicles

Description: This demonstration project uses modern simulation techniques to illustrate the important technologies and design variables that an auto-designer would consider in production a high efficiency, low emissions vehicle. Simulation and modeling techniques use the idea of capturing the relationships between real components of the systems with mathematical equations. These equations are then solved on a computer to simulate the behavior or performance of the system under various conditions. In the current demonstration project, we focus on many variations of a hydrogen-powered vehicle.
Date: August 16, 1996
Creator: Aceves, S.M.; Smith, J.R. & Johnson, N.L.
Partner: UNT Libraries Government Documents Department

Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, October--December 1995 (first quarter of fiscal year 1996)

Description: This is the Site Operator Program quarterly report for USDOE electric and hybrid vehicle research. Its mission now includes the three major activity categories of advancement of electric vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use and increasing public awareness and acceptance of EVs. The 11 Site Operator Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of the site operators totals about 250 vehicles. The individual fleets are summarized.
Date: March 1, 1996
Creator: Francfort, J.E.; Bassett, R.R. & Briasco, S.
Partner: UNT Libraries Government Documents Department

Ultracapacitor/battery electronic interface development. Final report

Description: A flexible, highly efficient laboratory proof-of-concept Ultracapacitor/Battery Interface power electronic circuit with associated controls was developed on a cost-shared contract funded by the US Department of Energy (DOE), the New York State Energy Research and Development Authority (NYSERDA), and the General Electric Company (GE). This power electronic interface translates the varying dc voltage on an ultracapacitor with bi-directional power flow to the dc bus of an inverter-supplied ac propulsion system in an electric vehicle application. In a related application, the electronic interface can also be utilized to interface a low-voltage battery to a dc bus of an inverter supplied ac propulsion system. Variations in voltage for these two intended applications occur (1) while extracting energy (discharge) or supplying energy (charge) to an ultracapacitor, and (2) while extracting energy (discharge) or supplying energy (charge) to a low-voltage battery. The control electronics of this interface is designed to be operated as a stand-alone unit acting in response to an external power command. However, the interface unit`s control is not configured to provide any of the vehicle system control functions associated with load leveling or power splitting between the propulsion battery and the ultracapacitor in an electric or hybrid vehicle application. A system study/preliminary design effort established the functional specification of the interface unit, including voltage, current, and power ratings, to meet the program objectives and technical goals for the development of a highly efficient ultracapacitor/battery electronic interface unit; and performed a system/application study of a hybrid-electric transit bus including an ultracapacitor and appropriate electronic interface. The maximum power capability of the ultracapacitor/battery electronic interface unit is 25 kW.
Date: June 30, 1998
Creator: King, R.D.; Salasoo, L.; Schwartz, J. & Cardinal, M.
Partner: UNT Libraries Government Documents Department

Multilevel converters for large electric drives

Description: Traditional two-level high frequency pulse width modulation (PWM) inverters for motor drives have several problems associated with their high frequency switching which produces common-mode voltage and high voltage change (dV/dt) rates to the motor windings. Multilevel inverters solve these problems because their devices can switch at a much lower frequency. Two different multilevel topologies are identified for use as a converter for electric drives, a cascade inverter with separate dc sources and a back-to-back diode clamped converter. The cascade inverter is a natural fit for large automotive all electric drives because of the high VA ratings possible and because it uses several levels of dc voltage sources which would be available from batteries or fuel cells. The back to back diode damped converter is ideal where a source of ac voltage is available such as a hybrid electric vehicle. Simulation and experimental results show the superiority of these two converters over PWM based drives.
Date: November 1, 1997
Creator: Tolbert, L. M. & Peng, F. Z.
Partner: UNT Libraries Government Documents Department

Cooperative Research and Development Agreement between the California Air Resources Board and Lockheed Martin Idaho Technologies Company. Final report

Description: This report summarizes the activities under a Cooperative Research and Development Agreement (CRADA) between Lockheed-Martin Idaho Technologies Company (LMITCO) and the California Air Resources Board (CARB). The activities were performed at the Idaho National Engineering and Environmental Laboratory (INEEL) between June 1995 and December 1997. Work under this agreement was concentrated in two task areas as defined in the California Air Resources Board`s contract number 94-908 having an approval date of June 9, 1995: Task 1--EV and HEV Vehicle Testing and Assessment and Task 4--Advanced Battery Testing.
Date: April 1998
Creator: Cole, G. H.
Partner: UNT Libraries Government Documents Department

1997 hybrid electric vehicle specifications

Description: The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.
Date: October 1996
Creator: Sluder, S.; Larsen, R. & Duoba, M.
Partner: UNT Libraries Government Documents Department

Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

Description: To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.
Date: December 1, 1997
Creator: Vyas, A.D.; Ng, H.K.; Santini, D.J. & Anderson, J.L.
Partner: UNT Libraries Government Documents Department

United States Department of Energy`s electric and hybrid vehicle site operator program. Final report, April 1991--September 1996

Description: Drivers in San Juan County, which, is comprised of islands making for short distances on rural (low speed limits) roads, found that present day electric vehicle technology can work in certain applications. An honest, accurate appraisal of the expectations of the vehicle is essential. When needs and capabilities are able to match up, then successful ownership and operation can occur. Today`s EV technology can accomplish certain driving tasks. Careful, honest analysis what is expected of the car can lead to a rewarding EV driving experience. Providing recharge locations in the community proved essential of the peace of mind of the EV driver. Since heating and air conditioning represent electric loads whose reduces range, a moderate to warm year round climate is best for today`s EV. Also, even limited solar recharging has been determined to improve battery pack life.
Date: November 6, 1997
Partner: UNT Libraries Government Documents Department