138 Matching Results

Search Results

Advanced search parameters have been applied.

Electric Brass Furnace Practice

Description: Report issued by the Bureau of Mines discussing the use of electric furnaces for melting brass, and other nonferrous alloys. Monetary benefits, health benefits, and other advantages of using electric furnaces are presented. Descriptions of furnaces and their operational methods are also presented. This report includes tables, illustrations, and photographs.
Date: 1922
Creator: Gillett, H. W. & Mack, E. L.
Partner: UNT Libraries Government Documents Department

Electric Brass Furnace Practice

Description: Report discussing 1) the pertinent information available on what electric furnaces can do to assist prospective users in selecting a furnace that fits their requirements and 2) the gradual evolution of the present commercial types of electric furnaces. Also discusses some of the fundamental principles in the design, construction, and operation of electric furnaces.
Date: July 1922
Creator: Gillett, H. W. & Mack, E. L.
Partner: UNT Libraries Government Documents Department

An Improved Tubular Electric Furnace for the Closed-Tube Distillation of Oil From Oil Shale

Description: Report explaining improvements made to a tubular electric furnace, which is using for the closed-tube distillation of oil from oil shale. From abstract: "The single unit, tubular electric furnace...has been modified to increase its capacity, compactness, ruggedness, and general utility."
Date: May 1953
Creator: Cuttitta, Frank & Kinser, Charles A.
Partner: UNT Libraries Government Documents Department

Cold-Mold Arc Melting and Casting

Description: Report issued by the U.S. Bureau of Mines providing updates and additional information related to cold-mold arc melting and casting. Abstract: "This bulletin reviews the historical background of the cold-mold arc-melting technology, with specific references to the development that led to homogeneous zirconium ingots. Descriptions are given of modern production arc-furnaces for vacuum melting of both exotic and conventional metals. Besides zirconium, specific data are given for production of chromium, thorium, and copper. The development of the skull-casting technique for titanium is detailed, and the application of the technique to such refractory metals as molybdenum and tungsten is described. Factors of operation of the apparatus and furnace design are considered" (p. 1).
Date: 1968
Creator: Beall, R. A. (Robert A.) & Hedges, Joseph Harold
Partner: UNT Libraries Government Documents Department

The effects of convection and oxygen presence on thermal testing of thin-shelled Celotex{trademark}-based packages

Description: Several experiments were performed in an attempt to determine the effects of both convection and oxygen levels during hypothetical thermal accident testing of thin-shelled Celotex{trademark}-based packages in furnaces. Obsolete DT-22 packages were used and experiments were performed in two separate fumaces, one gas-fired and one electric, each of which has previously been used for this type of testing. Oxygen levels were varied and measured in the gas-fired furnace while the electric fumace was operated in a standard manner. The gas-fired fumace is constructed so as to induce a very strong convective field within. After testing, the packages were evaluated by several methods to determine the effects of the thermal testing on the package. In general, there were no differences found for the packages tested in the two different furnaces or for packages tested in the same furnace under different conditions. Therefore, after careful consideration, it is concluded that thermal testing can still be performed in electric furnaces in which the oxygen supply is not refurbished and there is no forced convection heat transfer.
Date: June 1, 1994
Creator: Feldman, M. R.
Partner: UNT Libraries Government Documents Department

Precision control of high temperature furnaces

Description: It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.
Date: December 31, 1994
Creator: Pollock, G.G.
Partner: UNT Libraries Government Documents Department

[Energy efficient electric rotary furnace for class molding (repressing) precision optional blanks]. Quarterly progress report, 20 December 1997--20 August 1998

Description: The project objectives were: elimination/reduction of the use of mold release powder; improvement of temperature control and data acquisition; improve operator working conditions; and maximize energy efficiency. Electric rotary furnace prototype has been built and will be on-site by the end of September. Additional space has been leased to insure a clean environment for testing. Preliminary data for candidate hearth plate material supports the hypothesis that wetting of the glass may be controlled by temperature and surface chemistry. This report describes materials testing, prototype development, testing protocols and methods, and technical milestones.
Date: September 1, 1998
Creator: Pochan, D.
Partner: UNT Libraries Government Documents Department

TRIAC/SCR proportional control circuit

Description: A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage to frequency converter controls the reset input of a R-S flip flop, while an 0 crossing detector controls the set input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the reset and set inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.
Date: December 1, 1997
Creator: Hughes, Wallace J.
Partner: UNT Libraries Government Documents Department

Literature review of arc/plasma, combustion, and joule-heated melter vitrification systems

Description: This report provides reviews of papers and reports for three basic categories of melters: arc/plasma-heated melters, combustion-heated melters, and joule-heated melters. The literature reviewed here represents those publications which may lend insight to phase I testing of low-level waste vitrification being performed at the Hanford Site in FY 1995. For each melter category, information from those papers and reports containing enough information to determine steady-state mass balance data is tabulated at the end of each section. The tables show the composition of the feed processed, the off-gas measured via decontamination factors, gross energy consumptions, and processing rates, among other data.
Date: July 1, 1995
Creator: Freeman, C.J.; Abrigo, G.P.; Shafer, P.J. & Merrill, R.A.
Partner: UNT Libraries Government Documents Department

AISI/DOE Technology Roadmap Program: Behavior of Phosphorus in DRI/HBI During Electric Furnace Steelmaking

Description: Many common scrap substitutes such as direct reduced iron pellets (DRI), hot briquetted iron (HBI), iron carbide, etc., contain significantly higher levels of phosphorus steelmaking for the production of higher quality steels, control of phosphorus levels in the metal will become a concern. This study has developed a more complete understanding of the behavior of phosphorus in DRI during EAF steelmaking, through a thorough investigation of the kinetics and thermodynamics of phosphorus transfer in the EAF based upon laboratory and plant experiments and trials. Laboratory experiments have shown that phosphorus mass transfer between oxide and metallic phases within commercial direct reduced iron pellets occurs rapidly upon melting according to the local equilibrium for these phases. Laboratory kinetic experiments indicate that under certain conditions, phosphorus mass transfer between slag and metal is influenced by dynamic phenomena, which affect the mass transfer coefficient for the reaction and/or the slag metal interfacial area. Plant trials were conducted to directly evaluate the conditions of mass transfer in the electric furnace and to determine the effects of different scrap substitute materials upon the slag chemistry, the behavior of phosphorus in the steel, and upon furnace yield. The data from these trials were also used to develop empirical models for the slag chemistry and furnace temperature as functions of time during a single heat. The laboratory and plant data were used to develop a numerical process model to describe phosphorus transfer in the EAF
Date: October 5, 2001
Creator: Frueham, Richard J. & Manning, Christopher P.
Partner: UNT Libraries Government Documents Department

AISI/DOE Advanced Process Control Program Vol. 1 of 6: Optical Sensors and Controls for Improved Basic Oxygen Furnace Operations

Description: The development of an optical sensor for basic oxygen furnace (BOF) off-gas composition and temperature in this Advanced Process Control project has been a laboratory spectroscopic method evolve into a pre-commercialization prototype sensor system. The sensor simultaneously detects an infrared tunable diode laser ITDL beam transmitted through the process off-gas directly above the furnace mouth, and the infrared greybody emission from the particulate-laden off-gas stream. Following developmental laboratory and field-testing, the sensor prototype was successfully tested in four long-term field trials at Bethlehem Steel's Sparrows Point plant in Baltimore, MD> The resulting optical data were analyzed and reveal correlations with four important process variables: (1) bath turndown temperature; (2) carbon monoxide post-combustion control; (2) bath carbon concentration; and (4) furnace slopping behavior. The optical sensor measurement of the off-gas temperature is modestly correlated with bath turndown temperature. A detailed regression analysis of over 200 heats suggests that a dynamic control level of +25 Degree F can be attained with a stand-alone laser-based optical sensor. The ability to track off-gas temperatures to control post-combustion lance practice is also demonstrated, and may be of great use in optimizing post-combustion efficiency in electric furnace steelmaking operations. In addition to the laser-based absorption spectroscopy data collected by this sensor, a concurrent signal generated by greybody emission from the particle-laden off-gas was collected and analyzed. A detailed regression analysis shows an excellent correlation of a single variable with final bath turndown carbon concentration. Extended field trials in 1998 and early 1999 show a response range from below 0.03% to a least 0.15% carbon concentration with a precision of +0.0007%. Finally, a strong correlation between prolonged drops in the off-gas emission signal and furnace slopping events was observed. A simple computer algorithm was written that successfully predicts furnace slopping for 90% of the heats observed; over ...
Date: January 31, 2002
Creator: Allendorf, Sarah; Ottesen, David & Hardesty, Donald
Partner: UNT Libraries Government Documents Department

Energy savings through use of an improved reduction-cell cathode. Interim technical report, October 1, 1978-December 31, 1978

Description: This report summarizes the development work during the fifth quarter of the cost sharing contract between the Department of Energy and Kaiser Aluminum and Chemical Corporation. The project purpose is to develop a wettable and drained Hall cell cathode which will reduce the specific energy consumption of commercial cells by 20 to 25%. During this quarter the material characterization work has continued. In the last half of this period the decision was made to restart the 15KA piloe cell for a testing campaign of TiB/sub 2/ parts. The latter were ordered and partial shipments were received at the end of the quarter.
Date: January 1, 1978
Creator: Goodnow, W. H.
Partner: UNT Libraries Government Documents Department

Tank waste remediation system high-level waste vitrification system development and testing requirements

Description: this document provides the fiscal year (FY) 1995 recommended high-level waste melter system development and testing (D and T) requirements. The first phase of melter system testing (FY 1995) will focus on the feasibility of high-temperature operation of recommended high-level waste melter systems. These test requirements will be used to establish the basis for defining detailed testing work scope, cost, and schedules. This document includes a brief summary of the recommended technologies and technical issues associated with each technology. In addition, this document presents the key D and T activities and engineering evaluations to be performed for a particular technology or general melter system support feature. The strategy for testing in Phase 1 (FY 1995) is to pursue testing of the recommended high-temperature technologies, namely the high-temperature, ceramic-lined, joule-heated melter, referred to as the HTCM, and the high-frequency, cold-wall, induction-heated melter, referred to as the cold-crucible melter (CCM). This document provides a detailed description of the FY 1995 D and T needs and requirements relative to each of the high-temperature technologies.
Date: February 16, 1995
Creator: Calmus, R. B.
Partner: UNT Libraries Government Documents Department

Criteria determining the selection of slags for the melt decontamination of radioactively contaminated stainless steel by electroslag remelting

Description: Electroslag remelting is an excellent process choice for the melt decontamination of radioactively contaminated metals. ESR furnaces are easily enclosed and do not make use of refractories which could complicate thermochemical interactions between molten metal and slag. A variety of cleaning mechanisms are active during melting; radionuclides may be partitioned to the slag by means of thermochemical reaction, electrochemical reaction, or mechanical entrapment. At the completion of melting, the slag is removed from the furnace in solid form. The electroslag process as a whole is greatly affected by the chemical and physical properties of the slag used. When used as a melt decontamination scheme, the ESR process may be optimized by selection of the slag. In this research, stainless steel bars were coated with non-radioactive surrogate elements in order to simulate surface contamination. These bars were electroslag remelted using slags of various chemistries. The slags investigated were ternary mixtures of calcium fluoride, calcium oxide, and alumina. The final chemistries of the stainless steel ingots were compared with those predicted by the use of a Free Energy Minimization Modeling technique. Modeling also provided insight into the chemical mechanisms by which certain elements are captured by a slag. Slag selection was also shown to have an impact on the electrical efficiency of the process as well as the surface quality of the ingots produced.
Date: March 1, 1997
Creator: Buckentin, J.M.R.; Damkroger, B.K.; Shelmidine, G.J. & Atteridge, D.G.
Partner: UNT Libraries Government Documents Department

Glass: Rotary Electric Glass Furnace

Description: Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.
Date: January 29, 1999
Creator: Recca, L.
Partner: UNT Libraries Government Documents Department

[Design of gas and electric rotary furnaces for the glass industry]. Quarterly progress report, September 20--December 20, 1997

Description: The authors have continually stressed that the two most critical material parameters for the success of the rotary furnace are the hearth plate and the molding release powder. Both of these issues have been solidly addressed in this quarter. They have tested the three best candidates for hearth plate material this quarter. Although they had to use the in-house gas furnaces for the testing, one of the materials combines the best heating efficiency with the least sticking tendency. This material will be used for the electric prototype. The molding release powder is mainly used for preventing the glass from adhering to the hearth plate while the glass is softening for pressing. They recently visited several companies in Japan who also repress glass. The release agent that they use is Boron Nitride. They have identified a supplier within New York state, but their concern is the very high price of this material. They are bringing in samples of different grades for experimentation, but the focus continues to be to eliminate the need for any powder. An additional area for material testing was addressed during this quarter. Once the glass is in the tool (mold) for pressing, the glass has the potential to adhere to the metal that the tool and die are made from (usually steel). Both the powder and a spraying of a carbon product are currently used to reduce this problem. Alternate materials for the tooling and/or surface coatings of the steel need to be identified and tested. During this quarter, they conducted some off-site test runs on two candidate coating materials: platinum and titanium.
Date: December 31, 1997
Creator: Pochan, D.
Partner: UNT Libraries Government Documents Department

ESR melting under constant voltage conditions

Description: Typical industrial ESR melting practice includes operation at a constant current. This constant current operation is achieved through the use of a power supply whose output provides this constant current characteristic. Analysis of this melting mode indicates that the ESR process under conditions of constant current is inherently unstable. Analysis also indicates that ESR melting under the condition of a constant applied voltage yields a process which is inherently stable. This paper reviews the process stability arguments for both constant current and constant voltage operation. Explanations are given as to why there is a difference between the two modes of operation. Finally, constant voltage process considerations such as melt rate control, response to electrode anomalies and impact on solidification will be discussed.
Date: February 1, 1997
Creator: Schlienger, M.E.
Partner: UNT Libraries Government Documents Department

State-of-the-Art in Residential and Small Commercial Air HandlerPerformance

Description: Although furnaces, air conditioners, and heat pumps have become significantly more efficient over the last couple of decades, residential air handlers have typical efficiencies of only 10% to 15% due to poor electric motor and aerodynamic performance. These low efficiencies indicate that there is significant room for improvement of air handler fans. The other 85-90% of the electricity used by air handlers is manifested as heat. This extra heat reduces air conditioning cooling and dehumidification performance and effectively acts as fuel switching for fossil fueled furnaces. For electric furnaces, this heat substitutes directly for the electric resistance heating elements. For heat pumps, this heat substitutes for compressor-based high COP heating and effectively reduces the COP of the heat pump. Using a combination of field observations and engineering judgment they can assemble a list of the problems that lead to low air handler efficiency and potential solutions to these problems, as shown. None of the problems require exotic or complex solutions and there are no technological barriers to adopting them. Some of the solutions are simple equipment swaps (using better electric motors), others require changes to the way the components are built (tighter tolerances) and other relate to HVAC equipment design (not putting large fans in small cabinets).
Date: March 1, 2005
Creator: Walker, Iain S.
Partner: UNT Libraries Government Documents Department

Instrumentation for remote monitoring and control of liquid-fed ceramic melters

Description: New and existing instrumentation for the monitoring and control of the liquid-fed ceramic melter (LFCM) process have been tested and evaluated. The use of thermocouples for the monitoring of the glass melting process to assure a quality product and to monitor the condition of the melter equipment is well developed. Additional information about the operation of the melter including foaming, feeding, and cold cap coverage can be obtained from the temperature data. A melter viewing system consisting of an infrared camera and associated electronics has been demonstrated to provide clear pictures of the melter interior and cold cap surface during melter operation. The pneumatic level detection system functions well for measuring glass specific gravity and glass level in the melter. Further testing is needed to assess its capabilities for indicating overfeeding, bridging of the cold cap, and foaming. Acoustic monitoring was examined for detection of foaming and overfeeding, and time domain reflectometry was considered for detection of glass level, foaming, and salt formation.
Date: December 1, 1985
Creator: Westsik, J.H. Jr.; Wise, B.M.; Spanner, G.E. & Barnes, S.M.
Partner: UNT Libraries Government Documents Department

Preliminary Market Assessment for Cold Climate Heat Pumps

Description: Cold climate heat pump (HP) technology is relevant to a substantial portion of the U.S. population, especially with more than one-third of U.S. housing stock concentrated in colder regions of the country and another 31% in the mixed-humid climate region. Specifically, it is estimated that in 2010 almost 1.37 million heating equipment units were shipped to the cold/very cold climate regions and that 1.41 million were shipped to the nation s mixed-humid region. On a national level, the trend in the last decade has indicated that shipments of gas furnaces have grown at a slower rate than HPs. This indicates a potential opportunity for the cold climate HP, a technology that may be initially slow to penetrate its potential market because of the less expensive operating and first costs of gas furnaces. Anticipated implementation of regional standards could also negatively affect gas furnace shipments, especially with the higher initial cost for more efficient gas furnaces. However, as of 2011, the fact that there are more than 500 gas furnace product models that already achieve the expected efficiency standard indicates that satisfying the regional standard will be a challenge but not an obstacle. A look at the heating fuel and equipment currently being used in the housing stock provides an insight into the competing equipment that cold climate HPs hope to replace. The primary target market for the cold climate HP is the 2.6 million U.S. homes using electric furnaces and HPs in the cold/very cold region. It is estimated that 4.75% of these homeowners either replace or buy new heating equipment in a given year. Accordingly, the project team could infer that the cold climate HP primary market is composed of 123,500 replacements of electric furnaces and conventional air-to-air HPs annually. A secondary housing market for the cold climate HP ...
Date: September 1, 2011
Creator: Sikes, Karen; Khowailed, Gannate & Abdelaziz, Omar
Partner: UNT Libraries Government Documents Department

Abrasion and erosion testing of materials used in power production from coal

Description: The Albany Research Center (ARC) has a long history of studying abrasive wear, related to mineral testing, handling, and processing. The center has also been instrumental in the design and development of wear test procedures and equipment. Research capabilities at ARC include Pin-on-Drum, Pin-on-Disk, and Dry Sand/Rubber Wheel abrasion tests, Jaw Crusher gouging test, Ball-on-Ball Impact test, and Jet erosion tests. Abrasive and erosive wear studies have been used to develop both new alloys and improved heat treatments of commercial alloys. As part of ARC’s newest iteration on wear testing to evaluate materials for use in new and existing pulverized coal combustion and gasifier power systems, the ARC has designed and constructed a new High Temperature Hostile Atmosphere Erosion Wear Test (HAET). This new piece of test apparatus is designed for erosive particle velocities of 10-40 m/sec and temperatures from room temperature (23°C) to 800+°C, with special control over the gas atmosphere. A variable speed whirling arm design is used to vary the impact energy of the gravity fed erosive particles. The specimens are mounted at the edge of a disk and allow a full range of impingement angles to be selected. An electric furnace heats the specimens in an enclosed retort to the selected temperature. Tests include both oxidizing conditions and reducing conditions. A range of gases, including CO, CO2, CH4, H2, H2S, HCl, N2, O2, and SO2 can be mixed and delivered to the retort. During the erosion testing a stream of abrasive powder is delivered in front of the specimens. This apparatus is designed to use low abrasive fluxes, which simulate real operating conditions in commercial power plants. Currently ~270 μm SiO2 particles are being used to simulate the abrasive impurities typically found in coal. Since operators are always striving for longer lifetimes and higher operating temperatures, ...
Date: September 1, 2003
Creator: Tylczak, Joseph H.; Adler, Thomas A. & Rawers, James C.
Partner: UNT Libraries Government Documents Department

Energy use in the U.S. steel industry: a historical perspective and future opportunities

Description: The U.S. steel industry has taken enormous strides over the past decades to reduce its energy consumption; since the end of World War II, the industry has reduced its energy intensity (energy use per shipped ton) by 60 percent. Between 1990 and 1998 alone, intensity has dropped from 20 to 18 million Btu (MBtu) per ton. This figure is projected to decrease to 15 MBtu/ton by 2010 with an asymptotic trend towards 14 MBtu/ton. Domestic shipments are projected to flatten out over the next decade to around 105 million tons which means that total energy consumption will also decrease. Historically, the steel industry has accounted for about 6 percent of U.S. energy consumption. Today, that figure is less than 2 percent and will decrease further to 1.5 percent by 2010. The primary causes for the decrease in energy consumption since WWII are: The use of pellets in the blast furnace and the application of new technology in the ironmaking process to further reduce fuel rates per net ton of hot metal (NTHM); The total replacement of the open hearth process by basic oxygen and electric furnaces; The almost total replacement of ingot casting by continuous casting (which improved yield dramatically and thus reduced the tons of raw steel required per ton of shipments); and The growth of the electric furnace sector of the industry at the expense of hot metal-based processes (which has also stimulated scrap recycling so that about 55 percent of ''new'' steel is now melted from scrap steel). This report focuses on the concept of good practices (i.e., those that are sustainable and can use today's technology). If all the industry could operate on this basis, the additional savings per ton could total 2 MBtu, As further restructuring occurs and the swing from hot metal-based to electric ...
Date: September 1, 2000
Creator: Stubbles, John
Partner: UNT Libraries Government Documents Department

HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE

Description: This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Various thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.
Date: February 27, 2003
Creator: Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.; Kobelev, A.P.; Popkov, V.N.; Polkanov, M.A. et al.
Partner: UNT Libraries Government Documents Department