292 Matching Results

Search Results

Advanced search parameters have been applied.

A study of the design possibilities and techniques of pounding plants into fabric and paper

Description: The problem of investigating the possibilities of direct design transfer from plant to fabric and paper was divided into two parts. The first part is concerned with the exploration of the mechanics of the transfer. The second part of the problem is concerned with the exploration of the design possibilities of the medium.
Date: August 1968
Creator: Safford, Gayle Grisham
Partner: UNT Libraries

Catalytic Properties and Mechanical Behavior of Metallic Glass Powders

Description: Lack of crystalline order and microstructural features such as grain/grain-boundary in metallic glasses results in a suite of remarkable attributes including very high strength, close to theoretical elasticity, high corrosion and wear resistance, and soft magnetic properties. By altering the morphology and tuning of composition, MGs may be transformed into high-performance catalytic materials. In this study, the catalytic properties of metallic glass powders were demonstrated in dissociating toxic organic chemicals such as AZO dye. BMG powders showed superior performance compared to state of the art crystalline iron because of their high catalytic activity, durability, and reusability. To enhance the catalytic properties, high energy mechanical milling was performed to increase the surface area and defect density. Iron-based bulk metallic glass (BMG) of composition Fe48Cr15Mo14Y2C15B6 was used because of its low cost and ability to make large surface area by high energy ball milling. AZO dye was degraded in less than 20 minutes for the 9 hours milled Fe-BMG. However, subsequent increase in ball milling time resulted in devitrification and loss of catalytic activity as measured using UV-Visible spectroscopy. Aluminum-based bulk metallic glass (Al-BMG) powder of composition Al82Fe3Ni8Y7 was synthesized by arc-melting the constituent elements followed by gas-atomization. The particle size and morphology were similar to Fe-BMG with a fully amorphous structure. A small percentage of transition metal constituents (Fe and Ni) in a mostly aluminum alloy showed high catalytic activity, with no toxic by-products and no change in surface characteristics. Al-alloy particles, being light-weight, were easily dispersed in aqueous medium and accelerated the redox reactions. The mechanism of dye dissociation was studied using Raman and Infrared (IR) spectroscopy. Breaking of -C-H- and - C-N- bonds of AZO dye was found to be the primary mechanism. Mechanical behavior of individual BMG particles was evaluated by in situ pico-indentation in a scanning electron ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Garrison, Seth Thomas
Partner: UNT Libraries

Evaluation of normalization methods for cDNA microarray data by k-NN classification

Description: Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Using LOOCV error of k-NNs as the evaluation criterion, three double-bias-removal normalization strategies, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, outperform other strategies for removing spatial effect, intensity effect and scale differences from cDNA microarray data. The apparent sensitivity of k-NN LOOCV classification error to dye biases suggests that ...
Date: December 17, 2004
Creator: Wu, Wei; Xing, Eric P; Myers, Connie; Mian, Saira & Bissell, Mina J
Partner: UNT Libraries Government Documents Department

[News Script: Rayburn]

Description: Script from the WBAP-TV station in Fort Worth, Texas, covering a news story about House Speaker Sam Rayburn visiting Dallas, where he will be at the bedside of his sister.
Date: February 24, 1956
Creator: WBAP-TV (Television station : Fort Worth, Tex.)
Partner: UNT Libraries Special Collections

Dynamical Study of Guest-Host Orientational Interaction in LiquidCrystalline Materials

Description: Guest-host interaction has long been a subject of interest in many disciplines. Emphasis is often on how a small amount of guest substance could significantly affect the properties of a host material. This thesis describe our work in studying a guest-host effect where dye-doping of liquid crystalline materials greatly enhances the optical Kerr nonlinearity of the material. The dye molecules, upon excitation and via intermolecular interaction, provides an extra torque to reorient the host molecules, leading to the enhanced optical Kerr nonlinearity. We carried out a comprehensive study on the dynamics of the photoexcited dye-doped liquid crystalline medium. Using various experimental techniques, we separately characterized the dynamical responses of the relevant molecular species present in the medium following photo-excitation, and thus were able to follow the transient process in which photo-excitation of the dye molecules exert through guest-host interaction a net torque on the host LC material, leading to the observed enhanced molecular reorientation. We also observed for the first time the enhanced reorientation in a pure liquid crystal system, where the guest population is created through photoexcitation of the host molecules themselves. Experimental results agree quantitatively with the time-dependent theory based on a mean-field model of the guest-host interaction.
Date: December 20, 2005
Creator: Truong, Thai Viet
Partner: UNT Libraries Government Documents Department

Room temperature observation of quantum jumps of single molecule into dark states

Description: Fluctuations in the room temperature emission rate from single dye molecules which are excited with the near field scanning optical microscope reveal long (seconds) and short ({approximately} milliseconds) lived dark states.
Date: November 1, 1995
Creator: Ha, T.; Enderle, T.; Ogletree, D.F.; Selvin, P.R.; Weiss, S. & Chemla, D.S.
Partner: UNT Libraries Government Documents Department

Time-Dependent Interfacial Properties and DNAPL Mobility

Description: Interfacial properties play a major role in governing where and how dense nonaqueous phase liquids (DNAPLs) move in the subsurface. Interfacial tension and contact angle measurements were obtained for a simple, single component DNAPL (tetrachloroethene, PCE), complex laboratory DNAPLs (PCE plus Sudan IV dye), and a field DNAPL from the Savannah River Site (SRS) M-Area DNAPL (PCE, trichloroethene [TCE], and maching oils). Interfacial properties for complex DNAPLs were time-dependent, a phenomenon not observed for PCE alone. Drainage capillary pressure-saturation curves are strongly influenced by interfacial properties. Therefore time-dependence will alter the nature of DNAPL migration and penetration. Results indicate that the time-dependence of PCE with relatively high Sudan IV dye concentrations is comparable to that of the field DNAPL. Previous DNAPL mobility experiments in which the DNAPL was dyed should be reviewed to determine whether time-dependent properties influenced the resutls. Dyes appear to make DNAPL more complex, and therefore a more realistic analog for field DNAPLs than single component DNAPLs.
Date: March 10, 1999
Creator: Tuck, D.M.
Partner: UNT Libraries Government Documents Department

Nonlinear Optical Absorption and Refraction Study of Metallophthalocyanine Dyes

Description: This dissertation deals with the characterization of the nonlinear absorption and refraction of two representative metallophthalocyanine dyes: chloro aluminum phthalocyanine dissolved in methanol, referred to as CAP, and a silicon naphthalocyanine derivative dissolved in toluene, referred to as SiNc. Using the Z-scan technique, the experiments are performed on both the picosecond and nanosecond timescales at a wavelength of 0.532 μm.
Date: December 1992
Creator: Wei, Tai-Huei
Partner: UNT Libraries

Whole Genome Amplification of DNA from Residual Cells Left By Incidental Contact

Description: Typically, the number of genetic analyses performed on a sample of DNA has been limited by the amount of starting material. For example, the small quantity of DNA obtained from the cells within a fingerprint meant that only a five to ten reactions could be performed off a single sample. We demonstrate a process wherein total genomic DNA is amplified before forensic typing analysis. The process requires as few as 8 cells and produces sufficient material for up to 20,000 subsequent PCR reactions. The technique is particularly useful to enhance current methods of latent print analysis and has been shown to be compatible with common forensic print visualization and removal techniques including dye staining and powders.
Date: November 20, 2003
Creator: Turteltaub, K; Sorensen, K; Christian, A; Williams, J & Vrankovich, G
Partner: UNT Libraries Government Documents Department


Description: The indigo-carmine method is a simple, rapid, accurate colorimetric procedure for determining small amounts of dissolved oxygen in water (0 to 50 ppm). A solution of reduced indigo-carmine dye added to a water sample is oxidized by the presence of any dissolved oxygen and changes color. The change in color of the dye is directly proportional to the amount of dissolved oxygen present in the sample and can be determined by using a Johnson color comparator. (W.L.H.)
Date: November 1, 1959
Creator: Santoro, P.F. & Powell, A.S.
Partner: UNT Libraries Government Documents Department

Calcium Carbonate Storage in Amorphous Form and Its Template-Induced Crystallization

Description: Calcium carbonate crystallization in organisms often occurs through the transformation from the amorphous precursor. It is believed that the amorphous phase could be temporarily stabilized and stored, until its templated transition to the crystalline form is induced. Here we develop a bio-inspired crystallization strategy that is based on the above mechanism. Amorphous calcium carbonate (ACC) spherulitic particles are formed and stabilized on a self-assembled monolayer (SAM) of hydroxy-terminated alkanethiols on Au surface. The ACC is stored as a reservoir for ions and is induced to crystallize on command by introducing a secondary surface that is functionalized with carboxylic acid-terminated SAM. This secondary surface acts as a template for oriented and patterned nucleation. Various oriented crystalline arrays and micropatterned films are formed. We also show that the ACC phase can be doped with foreign ions (e.g. Mg) and organic molecules (e.g. dyes) and that these dopants later function as growth modifiers of calcite crystals and become incorporated into the crystals during the transformation process of ACC to calcite. We believe that our strategy opens the way of using a stabilized amorphous phase as a versatile reservoir system that can be converted in a highly controlled fashion to a crystalline form upon contacting the nucleating template.
Date: August 31, 2007
Creator: Han, T Y & Aizenberg, J
Partner: UNT Libraries Government Documents Department

First study of nano-composite scintillators under alpha irradiation

Description: We demonstrate that nano-composite materials based on semiconductor quantum dots have great potential for radiation detection via scintillation. While quantum dots and laser dyes both emit in the visible range at room temperature, the Stokes shift of the dyes is significantly larger. The scintillation output of both systems was studied under alpha irradiation and interpreted using a combination of energy-loss and photon transport Monte Carlo simulation models. The comparison of the two systems, which allows the quantification of the role played by the Stokes shift in the scintillation output, opens up exciting possibilities for a new class of scintillators that would take advantage of the limitless assembly of nano-crystals in large, transparent, and sturdy matrices.
Date: June 1, 2005
Creator: Letant, S & Wang, T
Partner: UNT Libraries Government Documents Department

Method to prepare Semtex

Description: This procedure requires the binder and uncoated RDX be prepared in separate steps, see Figure 1: (1) The binder and dye are mixed by agitation with a water-insoluble organic solvent (e.g., toluene), I; (2) The RDX/PETN is agitated thoroughly with water, II; (3) The binder solution I is added to the RDX/water mixture at II with thorough mixing to form a slurry III; (4) In the next step the solvent is distilled off at IV leaving resulting granules; (5) The next step is followed by filtration at V, which may be done by vacuum; (6) The composition is then dried at VI to a dough-like consistency.
Date: November 26, 2006
Creator: Alcaraz, A & Dougan, A
Partner: UNT Libraries Government Documents Department

Modeling preferential water flow and solute transport in unsaturated soil using the active region model

Description: Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared with the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.
Date: March 15, 2009
Creator: Sheng, F.; Wang, K.; Zhang, R. & Liu, H.H.
Partner: UNT Libraries Government Documents Department


Description: The installation of a milling yellow flow visualization loop has been completed. Milling yellow is an organic dye which when dissolved in water exhibits flow double refracting properties that permit visual observations of flow patterns. The equipment is to be used in qualitative studies of flow patterns in various models of reactor vessels and components. (auth)
Date: August 1, 1958
Creator: Mixon, W.R. & MacColl, H.A.
Partner: UNT Libraries Government Documents Department