7 Matching Results

Search Results

Advanced search parameters have been applied.

Design and Construction Solutions in the Accurate Realization of NCSX Magnetic Fields

Description: The National Compact Stellarator Experiment, NCSX, is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge national Laboratory. The goal of NCSX is to provide the understanding necessary to develop an attractive, disruption free, steady state compact stellaratorbased reactor design. This paper describes the recently revised designs of the critical interfaces between the modular coils, the construction solutions developed to meet assembly tolerances, and the recently revised trim coil system that provides the required compensation to correct for the “as built” conditions and to allow flexibility in the disposition of as-built conditions. In May, 2008, the sponsor decided to terminate the NCSX project due to growth in the project’s cost and schedule estimates. However significant technical challenges in design and construction were overcome, greatly reducing the risk in the remaining work to complete the project.
Date: September 29, 2008
Creator: Heitzenroeder, P.; Dudek, Lawrence E.; Brooks, Arthur W.; Viola, Michael E.; Brown, Thomas; Neilson, George H. et al.
Partner: UNT Libraries Government Documents Department

Large Aperture Electrostatic Dust Detector

Description: Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 ν has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.
Date: October 9, 2007
Creator: Skinner, C. H.; Hensley, R. & Roquemore, A. L.
Partner: UNT Libraries Government Documents Department

First Real-Time Detection of Surface Dust in a Tokamak

Description: The first real-time detection of surface dust inside a tokamak was made using an electrostatic dust detector. A fine grid of interlocking circuit traces was installed in the NSTX vessel and biased to 50 v. Impinging dust particles created a temporary short circuit and the resulting current pulse was recorded by counting electronics. The techniques used to increase the detector sensitivity by a factor of x10,000 to match NSTX dust levels while suppressing electrical pickup are presented. The results were validated by comparison to lab measurements, by the null signal from a covered detector that was only sensitive to pickup, and by the dramatic increase in signal when Li particles were introduced for wall conditioning purposes.
Date: May 20, 2010
Creator: Skinner, C.; Rais, B.; Roquemore, A. L.; Kugel, H. W.; Marsala, R. & Provost, T.
Partner: UNT Libraries Government Documents Department

Lithium Wall Conditioning And Surface Dust Detection On NSTX

Description: Lithium evaporation onto NSTX plasma facing components (PFC) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that binding of D atoms to the polycrystalline graphite material of the PFCs is fundamentally changed by lithium - in particular deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real-time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high voltage 3-phase waveform was evaluated for potential application to fusion reactors
Date: May 23, 2011
Creator: Skinner, C. H.; Bell, M. G.; Friesen, F. Q. L.; Heim, B.; Jaworski, M. A.; Kugel, H. et al.
Partner: UNT Libraries Government Documents Department

He Puff System For Dust Detector Upgrade

Description: Local detection of surface dust is needed for the safe operation of next-step magnetic fusion devices such as ITER. An electrostatic dust detector, based on a 5 cm x 5 cm grid of interlocking circuit traces biased to 50 V, has been developed to detect dust on remote surfaces and was successfully tested for the first time on the National Spherical Torus Experiment (NSTX). We report on a helium puff system that clears residual dust from this detector and any incident debris or fibers that might cause a permanent short circuit. The entire surface of the detector was cleared of carbon particles by two consecutive helium puffs delivered by three nozzles of 0.45 mm inside diameter. The optimal configuration was found to be with the nozzles at an angle of 30o with respect to the surface of the detector and a helium backing pressure of 6 bar. __________________________________________________
Date: October 1, 2010
Creator: Rais, B.; Skinner, C. H. & Roquemore, A. L.
Partner: UNT Libraries Government Documents Department

Electrostatic Dust Detection and Removal for ITER

Description: We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 μm spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm² with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations.
Date: September 1, 2008
Creator: Skinner, C.H.; Campos, A.; Kugel, H.; Leisure, J.; Roquemore, A.L. & Wagner, S.
Partner: UNT Libraries Government Documents Department

Advances in Electrostatic Dust Detection on Remote Surfaces

Description: The inventory of dust in next-step magnetic fusion devices will be regulated for safety reasons, however diagnostics to measure in-vessel dust are still in their infancy. Advances in dust particle detection on remote surfaces are reported. Two grids of interlocking circuit traces with spacing in the range 125 mu m to 25 mu m are biased to 30 V. Impinging dust creates a short circuit and the result current pulse is recorded. The detector response was measured with particles scraped from a carbon fiber composite tile and sorted by size category. The finest 25 mu m grid showed a sensitivity more than an order of magnitude higher than the 125 mu m grid. The response to the finest particle categories (5 –30 mu m) was two orders of magnitude higher than the largest (125 –250 mu m) category. Longer duration current pulses were observed from the coarser particles. The results indicate a detection threshold for fine particles below 1 mu g/cm^2.
Date: February 9, 2005
Creator: Voinier, C.; Skinner, C. H. & Roquemore, A. L.
Partner: UNT Libraries Government Documents Department