121 Matching Results

Search Results

Advanced search parameters have been applied.

Solar supplement to laundry drying. Annual progress report, October 31, 1977--October 31, 1978

Description: A project is reported which utilizes solar energy to supplement the heating energy requirements of a large commercial type laundry dryer. Air is solar heated in flat-plate collectors and is introduced into the air intake of a dryer. The air is drawn directly from the outdoor ambient air. This system is designed for direct supply of solar heated air to the dryer with no solar heat storage. Solar heat storage could not be justified economically due to the close match in schedule between solar availability and laundry operation. The factors associated with selection of a hospital laundry facility for the project site are discussed. The design of the system for solar laundry drying is presented.
Date: October 1, 1978
Creator: Smith, C.C.
Partner: UNT Libraries Government Documents Department

Pacific Northwest GridWise™ Testbed Demonstration Projects; Part II. Grid Friendly™ Appliance Project

Description: Fifty residential electric water heaters and 150 new residential clothes dryers were modified to respond to signals received from underfrequency, load-shedding appliance controllers. Each controller monitored the power-grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances were installed and monitored for more than a year at residential sites at three locations in Washington and Oregon. The controllers and their appliances responded reliably to each shallow underfrequency event—an average of one event per day—and shed their loads for the durations of these events. Appliance owners reported that the appliance responses were unnoticed and caused little or no inconvenience for the homes’ occupants.
Date: October 1, 2007
Creator: Hammerstrom, Donald J.; Brous, Jerry; Chassin, David P.; Horst, Gale R.; Kajfasz, Robert; Michie, Preston et al.
Partner: UNT Libraries Government Documents Department

Heat transfer enhanced microwave process for stabilization of liquid radioactive waste slurry. Final report

Description: The objectve of this CRADA is to combine a polymer process for encapsulation of liquid radioactive waste slurry developed by Monolith Technology, Inc. (MTI), with an in-drum microwave process for drying radioactive wastes developed by Oak Ridge National Laboratory (ORNL), for the purpose of achieving a fast, cost-effectve commercial process for solidification of liquid radioactive waste slurry. Tests performed so far show a four-fold increase in process throughput due to the direct microwave heating of the polymer/slurry mixture, compared to conventional edge-heating of the mixer. We measured a steady-state throughput of 33 ml/min for 1.4 kW of absorbed microwave power. The final waste form is a solid monolith with no free liquids and no free particulates.
Date: March 31, 1995
Creator: White, T.L.
Partner: UNT Libraries Government Documents Department

Application of solar energy to industrial drying of soybeans: Phase III, performance evaluation. Final report

Description: A 15-month performance evaluation was conducted on a solar system designed and constructed to augment the industrial drying of soybeans at the Gold Kist, Inc., extraction plant in Decatur, Alabama. The plant employs three oil-fired, continuous-flow dryers of 3,000 bu/hr each. The solar system consists of 672 Solaron air collectors that temper the airflow into the existing dryers. Since the requirement for energy exceeds the peak solar system capacity, no storage is provided. The interface with the existing facility is simply accomplished by three ducts that release the solar heated air directly adjacent to the dryer air intakes, and no mechanical coupling is needed. The solar system was operated for 1,752 hr on 290 days during the 15-month period without a single failure sufficient to cause shutdown. No interference with normal plant operations was experienced. Maintenance of the solar system, consisting of service to the air handling unit, cleaning of collector glazing, and minor duct repair, totaled $1,564. System utilization was only 46.3%. This was primarily due to daytime routine maintenance performed on the conventional drying and processing equipment. The solar fraction was not large enough to justify maintenance shift changes. An average collector efficiency of 26.2% was experienced. Contamination caused by the local plant environment reduced the average collector efficiency by 9.3 percentage points. A prototype of an automatic cleaning system was constructed and tested.
Date: October 31, 1979
Creator: Hall, B.R.
Partner: UNT Libraries Government Documents Department

Cost analysis in support of minimum energy standards for clothes washers and dryers

Description: The results of the cost analysis of energy conservation design options for laundry products are presented. The analysis was conducted using two approaches. The first, is directed toward the development of industrial engineering cost estimates of each energy conservation option. This approach results in the estimation of manufacturers costs. The second approach is directed toward determining the market price differential of energy conservation features. The results of this approach are shown. The market cost represents the cost to the consumer. It is the final cost, and therefore includes distribution costs as well as manufacturing costs.
Date: February 2, 1979
Partner: UNT Libraries Government Documents Department

Modified horizontal solar collector for low temperature grain drying

Description: The project consisted of constructing a horizontal solar collector with a small amount of rock storage integrated into the collector air stream. The collected energy was used to dry corn in a 6000 bushel low-temperature drying facility. The collector proved to be economically feasible to build and collected sufficient energy to show a reasonable return on the investment.
Date: January 27, 1980
Partner: UNT Libraries Government Documents Department

Microwave-vacuum drying system (MIVAC). Progress report No. 1

Description: Initial progress is reported in research aimed at developing a microwave vacuum system for drying grain at a facility capable of handling up to 400 bushels/h and storing up to 1000 bushels each of wet and dry grain. Potential suppliers of microwave equipment were identified, preliminary facility designs were considered, and the fabrication of test equipment needed to acquire performance data was begun. (LCL)
Date: September 17, 1976
Creator: Wear, F C
Partner: UNT Libraries Government Documents Department

Improving the energy efficiency of residential clothes dryers

Description: An experimental study on energy efficient electrical domestic clothes dryers is presented. A literature survey was performed and four basic energy saving techniques were identified: (1) reduced air flow rate and heater input, (2) recirculation of a portion of the exhaust air back into the clothes dryer, (3) heat recovery, utilizing an air-to-air heat exchanger, and (4) 100% recirculation of air through the dryer and a heat pump to condense water out of the air. Reduced air flow rate and heater input leads to energy savings around 8%, while recirculation of exhaust air reduces the energy consumption by approximately 18%. Because of the low cost of these two measures, they should be pursued by the manufacturers. When utilizing an air-to-air heat exchanger for heat recovery, two modes are considered. The first is to preheat the inlet air with heat from the exhaust air, which results in 20 to 26% energy savings depending upon the location of the dryer in the house. The second more attractive mode is 100% recirculation of air and condensation of water from this air in the heat exchanger (using indoor air as a heat sink) and represents a 100% heat recovery but leads to a 1 to 6% increase in energy consumption. The development of a clothes dryer equipped with an air-to-air heat exchanger and a summer/winter switch (preheating mode in the summer and recirculation/condenstion mode in the winter) should be pursued by the manufacturers. Recirculation through a heat pump with condensation again gives a 100% heat recovery and can save up to 33% in energy consumption but yields long drying times due to limitations of the condenser temperature.
Date: July 1, 1983
Creator: Hekmat, D. & Fisk, W.J.
Partner: UNT Libraries Government Documents Department

Solar-assisted electric clothes dryer using a home attic as a heat source

Description: This study was undertaken to determine the suitability of using a southeastern home attic as a means of reducing the energy consumption of an electric clothes dryer. An inexpensive duct (duplicable for $25) was constructed to collect hot attic air from the peak of a south facing roof and introduce it into the dryer inlet. Instrumentation was added to measure inlet temperatures and operating time/energy consumption of the dryer. Standardized test loads, in addition to normal laundry, were observed over the period of one year. The heat-on time of the dryer tested was shown to be reduced .16 to .35 minutes per /sup 0/C rise in inlet temperature. Inlet temperatures produced by the attic duct peaked at 56/sup 0/C(133/sup 9/F) in May/June and 40/sup 0/C(104/sup 0/F) in February. Based on peak temperatures available between 2 and 4 pm each month, a potential 20% yearly average savings could be realized. Economic viability of the system, dependant primarily on dryer usage, can be computed using a formula derived from the test results and included in the report.
Date: unknown
Creator: Stana, J.M.
Partner: UNT Libraries Government Documents Department

Methodology for inducing cyclicality into ORNL based shipments projections

Description: In estimating regulatory impacts on appliance manufacturers, it is necessary to utilize projections of appliance shipments. A methodology is presented for projecting appliance shipments which incorporates cyclical variation in conjunction with long-run trends provided by the ORNL model. (MHR)
Date: November 4, 1980
Creator: Ross, D.P.
Partner: UNT Libraries Government Documents Department

Solar kiln demonstraction project. Semi-annual progress report. [Lumber dryer]

Description: Drawings for the solar lumber predrier demonstration project for Sherwood Forest products Corp. in Waverly, Ohio, are presented. Drawings are included for the site plan, foundation plan, floor plan, framing plan, and structural plan. Project status is outlined: site development work was initiated during the late fall of 1980 and some materials for the project have been acquired. (WHK)
Date: January 1, 1980
Partner: UNT Libraries Government Documents Department

Analysis and development of a solar energy regenerated desiccant crop drying facility: Phase I. Final report, July 1976--April 1977

Description: The results of a study to verify the technical feasibility of the regenerated desiccant crop drying concept, characterize its performance, investigate design requirements, and define a pilot facility for further evaluating the operational and energy-conservative characteristics of the drying system are documented. The pilot facility defined in this study will be a use R and D tool of sufficient size to permit a meaningful evaluation of the system and to provide the necessary criteria for development of full-scale systems. The principal finding of the study is that the regenerated desiccant crop drying concept is technically feasible and has the capability to achieve a drying efficiency of approximately twice that of conventional crop drying systems. When using a fossil fuel energy source, energy savings will be approximately 40 to 50%. With solar energy input, the total fossil fuel savings could be 70 to 90%. The economic feasibility of the system appears promising. As with other new energy conserving systems that are presently capital-intensive, the economic viability of the system will be dependent on future capital cost reductions, on the future price of fossil fuels, and on the specific application of the system. Regarding system applications, it was concluded that the regenerated desiccant drying system, with or without the use of solar energy, will be economically best suited for a large central processing application, where it can receive a maximum amount of use and will benefit from economy-of-scale cost considerations. The basic study recommendations are: (1) additional R and D activities should be conducted to identify and evaluate means for achieving system cost reductions, and (2) the Mobile Pilot Facility program should be initiated.
Date: April 1, 1977
Creator: Ko, S.M.; Merrifield, D.V. & Fletcher, J.W.
Partner: UNT Libraries Government Documents Department

High Efficiency, High Performance Clothes Dryer

Description: This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was ...
Date: March 31, 2005
Creator: Pescatore, Peter & Carbone, Phil
Partner: UNT Libraries Government Documents Department

Dehydration project report

Description: Catalytic Industrial Group became interested in the ability to use its catalytic infrared technology for the removal of moisture in substances after having had very positive experience in removing moisture from water-based coatings which are becoming increasingly popular as industry strives to comply with clean air mandates. The first attempts were crude but showed that the moisture could be removed, and intriguing enough that they started to think about a conveying-based system that would remove moisture from products. The initial tests were designed around sawdust. The authors felt that the market in particleboard and in the MDF board by itself justified the research into this concept. The Kansas Department of Health and Environment has been kept apprised of the on-going development of the infrared drying system by Catalytic Industrial Group. There were some early delays in the delivery of equipment needed to build the prototype machine. The design changes identified during the experimental phase of the development of the infrared dryer have been resolved and a process-testing device has been developed. This technical report outlines the progress made to date.
Date: August 31, 1998
Partner: UNT Libraries Government Documents Department

Integration of thickener underflow into thermal dryer circuit. Final report

Description: A large number of coal preparation plants in the United States are troubled with coal fines and associated plant operation problems. As part of their process, these plants use thermal dryers for producing product coal, cyclones for first-stage recovery of coal fines, and wet scrubbers for the second-stage removal of coal fines carry-over from the dryer exhaust gas. The first challenge for these plants is to recover the clean ultra-fine coal captured in the scrubbers rather than to dispose of it in settling ponds. The second challenge is to mitigate the over-dry fine coal dusting problems in the dryer product. Prior to the completion of this program, the difficulties of the first challenge involving the recovery and use of fine clean coal from the thermal dryer scrubber effluent had not been solved. The second challenge, controlling fine coal dusting, was previously met by applying a solution of surfactants and process water to the over-dry coal fraction. As a result of the demonstration provided by the performance of this program, the implementation of a simple process improvement, involving the use of a thickener in combination with a belt press, simultaneously solved both challenges: the de-dusting and the dryer scrubber effluent recovery issues. The objective of this project was to: (1) Use a clean coal thickener with a squeeze belt press to recover the ultra-fine coal in dryer scrubber effluent; (2) Demonstrate that the coal-water mixture (CWM) produced from scrubber sludge of a thermal dryer can be used as a dust suppressant. The thickener/belt press system has increased the production of JWRI Mine Number 4 by approximately 0.7%. This production increase was accomplished by recovering and re-using 3 metric tons/hr (3.3 tons/hr) of coal fines that were previously sent to holding ponds, returning this as a 50% CWM to de-dust the 430 ...
Date: December 31, 1998
Creator: McClaine, A.W. & Breault, R.W.
Partner: UNT Libraries Government Documents Department

Grain Drier Project Report for task 2 dated July 1990 edited 1991, 1992. Follow up report

Description: One of the original projects undertaken under the cooperative agreement No. DE-FC04-87AL42558 between the Massachusetts Photovoltaic Program and the United States Department of Energy was to design, build, and test a grain drier which utilized solar energy effectively. Different grains have different drying requirements, and the grain drier team chose to design the drier for rice because of the worldwide economic importance of this staple food and also because of the challenges that drying rice presents. Rice loses much of its market value if it is exposed to large temperature changes while drying; therefore, a solar rice drier must be designed so as to try to level the temperature variations which naturally arise from the intermittency of the solar source. The design team committed itself early in the project to a hybrid concept, where solar energy is utilized in two ways: it is captured {open_quote}thermally{close_quote} in a rock-bed which acts at the same time as thermal storage and buffer, and it is converted {open_quote}directly{close_quote} in a small photovoltaic panel which generates electricity to power a small fan to circulate air through the rock-bed and the grain during daylight hours. At night, natural convection drives the air flow. The design of most of the system is flexible, in that the drier can be built with materials available at the intended site, with non-specialized labor. The team has purposely avoided any {open_quote}high tech{close_quote} solution which would increase the drier cost for third-world users. Therefore, the drier design does not incorporate selective surfaces or a vacuum, two common methods of enhancing solar thermal performance. The design does incorporate a small but relatively high value element, the PV panel and fan package. A major part of the group effort was devoted to data acquisition, to analyze the effects of different modifications on the drier ...
Date: July 1, 1990
Creator: Frye, S.; Hall, R.; Lee, Myoung & Ouyang, Chieh
Partner: UNT Libraries Government Documents Department

Seismic Adequacy Review of PC012 SCEs that are Potential Seismic Hazards with PC3 SCEs at Cold Vacuum Dryer (CVD) Facility

Description: This document provides seismic adequacy review of PCO12 Systems, Components L Equipment anchorage that are potential seismic interaction hazards with PC3 SCEs during a Design Basis Earthquake. The PCO12 items are identified in the Safety Equipment List as 3/1 SCEs.
Date: August 12, 1999
Creator: OCOMA, E.C.
Partner: UNT Libraries Government Documents Department

Press and Dryer Roll Surfaces and Web Transfer Systems

Description: The objective of the project is to provide fundamental knowledge and diagnostic tools needed to design new technologies that will allow ultra high speed web transfer from press rolls and dryer cylinders. From a fundamental standpoint, we expect that roll surface performance depends on the composition of contaminants that deposit on those surfaces during use, as well as the materials and finishing techniques used in manufacturing these surfaces. We need to understand; the contamination process, the influence of contamination on work of adhesion, the roles of surface topology, film splitting, and process conditions on web transfer. The purpose of this quarterly report is to provide an overview of the project including key tasks, schedules for completion of tasks and to document accomplishments.
Date: May 1, 2000
Creator: Patterson, T. F.
Partner: UNT Libraries Government Documents Department