312 Matching Results

Search Results

Advanced search parameters have been applied.

Environmental Impacts of Synthetic Based Drilling Fluids

Description: This report covers the observed environmental impacts of synthetic based drilling fluids (SBF) that are used in deepwater oil drilling. It is found that SBF tends to accumulate in the sediment which tends to exhibit low toxicity and effects the living organisms in various ways.
Date: August 2000
Creator: Neff, J. M.; McKelvie, S. & Ayers, R.C., Jr.
Partner: UNT Libraries Government Documents Department

INTEGRATED DRILLING SYSTEM USING MUD ACTUATED DOWN HOLE HAMMER AS PRIMARY ENGINE

Description: A history and project summary of the development of an integrated drilling system using a mud-actuated down-hole hammer as its primary engine are given. The summary includes laboratory test results, including atmospheric tests of component parts and simulated borehole tests of the hammer system. Several remaining technical hurdles are enumerated. A brief explanation of commercialization potential is included. The primary conclusion for this work is that a mud actuated hammer can yield substantial improvements to drilling rate in overbalanced, hard rock formations. A secondary conclusion is that the down-hole mud actuated hammer can serve to provide other useful down-hole functions including generation of high pressure mud jets, generation of seismic and sonic signals, and generation of diagnostic information based on hammer velocity profiles.
Date: December 1, 2005
Creator: Fernandez, John V. & Pixton, David S.
Partner: UNT Libraries Government Documents Department

In situ freeze-capturing of fracture water using cryogenic coring

Description: Current methods do not allow for sampling of in situ water from unsaturated fractures in low-moisture environments. A novel cryogenic coring technique based on the method developed by Simon and Cooper (1996) is used to collect in situ water in unsaturated fractures. This method uses liquid nitrogen as the drilling fluid, which can freeze the fracture water in place while coring. Laboratory experiments are conducted to demonstrate that water in an unsaturated fracture can be frozen and collected using cryogenic coring.
Date: January 29, 2004
Creator: Su, Grace W.; Wang, Joseph S.Y. & Zacny, Kris
Partner: UNT Libraries Government Documents Department

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

Description: This first semiannual report covers efforts to select the materials that will be used in this project. Discussions of crude oils, rocks, smooth mineral surfaces, and drilling mud additives are included in this report.
Date: June 1, 2002
Creator: Buckley, Jill S. & Morrow, Norman r.
Partner: UNT Libraries Government Documents Department

Topical Report: Task 2.2 "Pressure Transmissibility"

Description: The rate and amplitude of pressure transmission of various drilling fluids--particularly aphron drilling fluids--are measured in a long conduit and in sand packs to determine how pressure transmissibility can affect fluid invasion.
Date: July 30, 2004
Creator: Belkin, Arkadiy & Growcock, Fred
Partner: UNT Libraries Government Documents Department

Topical Report: Task 1.4 Correlation of Capillary Suction Time with Leak-Off Behavior

Description: Core Leak-off tests are commonly used to ascertain the ability of a drilling fluid to seal permeable rock under downhole conditions. Unfortunately, these tests are expensive and require a long time to set up. To monitor fluid invasion trends and to evaluate potential treatments for reducing fluid invasion on location, a simpler screening test is highly desirable. The Capillary Suction Time (CST) Test has been used since the 1970's as a fast, yet reliable, method for characterizing fluid filterability and the condition of colloidal materials in water treatment facilities and drilling fluids. For the latter, it has usually been applied to determine the state of flocculation of clay-bearing fluids and to screen potential shale inhibitors. In this work, the CST method was evaluated as a screening tool for predicting relative invasion rates of drilling fluids in permeable cores. However, the drilling fluids examined--DRILPLEX, FLOPRO, and APHRON ICS--are all designed to generate low fluid loss and give CST values that are so high that fluid invasion comes to be dominated by experimental artifacts, such as fluid evaporation. As described in this work, the CST procedure was modified so as to minimize such artifacts and permit differentiation of the fluids under investigation.
Date: December 17, 2004
Creator: Hoff, Tatiana & Growcock, Fred
Partner: UNT Libraries Government Documents Department

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

Description: The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.
Date: January 1, 2006
Creator: Buckley, Jill S. & Morrow, Norman R.
Partner: UNT Libraries Government Documents Department

Fluid-Rock Characterization for NMR Well Logging and Special Core Analysis

Description: The overall objective of this effort is to develop, build and test a high-speed drilling motor that can meet the performance guidelines of the announcement, namely: 'The motors are expected to rotate at a minimum of 10,000 rpm, have an OD no larger than 7 inches and work downhole continuously for at least 100 hours. The motor must have common oilfield thread connections capable of making up to a drill bit and bottomhole assembly. The motor must be capable of transmitting drilling fluid through the motor'. To these goals, APS would add that the motor must be economically viable, in terms of both its manufacturing and maintenance costs, and be applicable to as broad a range of markets as possible. APS has taken the approach of using a system using planetary gears to increase the speed of a conventional mud motor to 10,000 rpm. The mud flow is directed around the outside of the gear train, and a unique flow diversion system has been employed. A prototype of the motor was built and tested in APS's high-pressure flow loop. The motor operated per the model up to {approx}4200 rpm. At that point a bearing seized and the performance was severely degraded. The motor is being rebuilt and will be retested outside of this program.
Date: December 31, 2007
Creator: Hirasaki, George & Mohanty, Kishore
Partner: UNT Libraries Government Documents Department

An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

Description: A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.
Date: June 30, 2007
Creator: TerraTek
Partner: UNT Libraries Government Documents Department

Application of direct-fitting, mass-integral, and multi-ratemethods to analysis of flowing fluid electric conductivity logs fromHoronobe, Japan

Description: The flowing fluid electric conductivity (FFEC) loggingmethod is an efficient way to provide information on the depths,salinities, and transmissivities of individual conductive featuresintercepted by a borehole, without the use of specialized probes. Usingit in a multiple-flow-rate mode allows, in addition, an estimate of theinherent "far-field" pressure heads in each of the conductive features.The multi-rate method was successfully applied to a 500-m borehole in agranitic formation and reported recently. The present paper presents theapplication of the method to two zones within a 1000-m borehole insedimentary rock, which produced, for each zone, three sets of logs atdifferent pumping rates, each set measured over a period of about oneday. The data sets involve a number of complications, such as variablewell diameter, free water table decline in the well, and effects ofdrilling mud. To analyze data from this borehole, we apply varioustechniques that have been developed for analyzing FFEC logs:direct-fitting, mass-integral, and the multi-rate method mentioned above.In spite of complications associated with the tests, analysis of the datais able to identify 44 hydraulically conducting fractures distributedover the depth interval 150-775 meters below ground surface. Thesalinities (in FEC), and transmissivities and pressure heads (indimensionless form) of these 44 features are obtained and found to varysignificantly among one another. These results are compared with datafrom eight packer tests with packer intervals of 10-80 m, which wereconducted in this borehole over the same depth interval. They are foundto be consistent with these independent packer-test data, thusdemonstrating the robustness of the FFEC logging method under non-idealconditions.
Date: August 1, 2007
Creator: Doughty, C.; Tsang, C.-F.; Hatanaka, K.; Yabuuchi, S. & Kurikami, H.
Partner: UNT Libraries Government Documents Department

Corrective Action Investigation Plan for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters Nevada Test Site, Nevada, Revision 0

Description: Corrective Action Unit 367 is located in Area 10 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 367 comprises the four corrective action sites (CASs) listed below: • 10-45-01, U-10h Crater (Sedan) • 10-45-02, Ess Crater Site • 10-09-03, Mud Pit • 10-45-03, Uncle Crater Site The CASs in CAU 367 are being investigated because hazardous and/or radioactive contaminants may be present in concentrations that exceed risk-based corrective action (RBCA) levels. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend CAAs for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting CAAs. The scope of the corrective action investigation for CAU 367 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys. • Collect and submit environmental samples for laboratory analysis to determine the area where TED at the site exceeds FALs (i.e., corrective action boundary). • Evaluate TED to potential receptors in areas along Mercury Highway that have been impacted by a release of radionuclides from the Sedan test. • Collect and submit environmental samples for laboratory analysis related to the drilling mud within CAS 10-09-03, Mud Pit, and any encountered stains or waste as necessary to determine whether COCs are present. • If COCs are present, collect additional step-out samples to define the extent of the contamination. • Collect samples of investigation-derived waste, as needed, for waste management purposes.
Date: December 1, 2009
Creator: Matthews, Patrick
Partner: UNT Libraries Government Documents Department

Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

Description: This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.
Date: September 30, 2005
Creator: Black, Alan & Judzis, Arnis
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF NEW DRILLING FLUIDS

Description: The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.
Date: August 1, 2003
Creator: Burnett, David B.
Partner: UNT Libraries Government Documents Department

Streamlined approach for environmental restoration plan for corrective action unit 416, Mud Pit, Project Shoal Area

Description: This plan addresses the actions necessary for the restoration and closure of the Project Shoal Area (PSA), Surface Corrective Action Unit (CAU) 416, Mud Pit (Corrective Action Site No. 57-09-01), a pit that was used to store effluent produced during drilling of the Post-Shot Borehole PS-1 in 1963. This plan describes the activities that will occur at the site and the steps that will be taken to gather enough data to obtain a notice of completion from the Nevada Division of Environmental Protection (NDEP). This plan was prepared under the Streamlined Approach for Environmental Restoration (SAFER) concept, and it will be implemented with the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996) and the Industrial Sites Quality Assurance Project Plan (DOE/NV, 1994). The SAFER process is being employed at this CAU where enough information exists about the nature and extent of contamination to propose an appropriate corrective action without completing a Corrective Action Decision Document and Corrective Action Plan. This process combines elements of the Data Quality Objective (DQO) process and the observational approach to help plan and conduct corrective actions. DQOs are used to identify the problem and define the type and quality of data needed to complete the investigation phase of the process. This has already been completed for the mud pit so it will not be repeated here. The DQOs for the mud pit are presented in the Corrective Action Investigation Plan for Project Shoal Area, CAU No. 416 (DOE/NV, 1996). This observational approach provides a framework for managing uncertainty and planning decision making.
Date: July 1, 1997
Partner: UNT Libraries Government Documents Department

Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

Description: On November 23, 1998, an 18,000-foot-deep wild-cat natural gas well being drilled near Bakersfield, CA blew out and caught fire. All attempts to kill this well failed, and the well continues to flow under limited control, producing large volumes of natural gas, salt water, and some oil. The oil and some of the water is being separated and trucked off site, and the remaining gas and water is being burned at the well head. A relief well is being drilled approximately one-quarter mile away in an attempt to intercept the first well. If the relief well is successful, it will be used to cement in and kill the first well. Epoch Wellsite Services, Inc., the mud-logging company for the initial well and the relief well, requested Sandia's rolling float meter (RFM) for these critical drilling operations. The RFM is being used to measure the mud outflow rate and detect kicks while drilling the relief well, which will undoubtedly encounter reservoir conditions similar to those responsible for the blow out. Based on its prior experience with the RFM, Epoch believes that it is the only instrument capable of providing the level of accuracy and response to mudflow needed to quickly detect kicks and minimize the risk of a blowout on this second critical well. In response to the urgent request from industry, Sandia and Epoch technicians installed the RFM on the relief well return line, and completed its initial calibration. The data from the RFM is displayed in real-time for the driller, the companyman, and the toolpusher via Epochs RIGWATCH Drilling Instmmentation System. The RFM has already detected several small kicks while drilling toward the annulus of the blown out well. A conventional paddle meter is located downstream of the RFM to provide redundancy and the opportunity to compare the two ...
Date: April 27, 1999
Creator: Staller, George E. & Whitlow, Gary
Partner: UNT Libraries Government Documents Department

Executive Summary of State Data Related to Abandoned Centralized and Commercial Drilling-Fluid Disposal Sites in Louisiana, New Mexico, Oklahoma, and Texas

Description: This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertaken for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.
Date: March 1, 2003
Creator: Nance, H. Seay
Partner: UNT Libraries Government Documents Department

OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS & HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION

Description: The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for the high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.
Date: October 1, 2004
Creator: Black, Alan & Judzis, Arnis
Partner: UNT Libraries Government Documents Department

ADVANCED CUTTINGS TRANSPORT STUDY

Description: This is the second quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between Oct 1, 2000 and December 31, 2000. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 2: Addition of a foam generation and breaker system), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (d) Research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (e) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (h) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members. The tasks Completed During This Quarter are Task 7 and Task 8.
Date: January 30, 2000
Creator: Reed, Troy; Miska, Stefan; Takach, Nicholas; Ashenayi, Kaveh; Kane, Gerald; Pickell, Mark et al.
Partner: UNT Libraries Government Documents Department

ADVANCED CUTTINGS TRANSPORT STUDY

Description: This is the first quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between July 14, 2000 and September 30, 2000. This report presents information on the following specific tasks: (a) Progress in Advanced Cuttings Transport Facility design and development (Task 2), (b) Progress on research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress on research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress on research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress on research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Initiate research on project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Progress on instrumentation tasks to measure: Cuttings concentration and distribution (Tasks 11), and Foam properties (Task 12), (h) Initiate a comprehensive safety review of all flow-loop components and operational procedures. Since the previous Task 1 has been completed, we will now designate this new task as: (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.
Date: October 30, 2000
Creator: Reed, Troy; Miska, Stefan; Takach, Nicholas; Ashenayi, Kaveh; Kane, Gerald; Pickell, Mark et al.
Partner: UNT Libraries Government Documents Department

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

Description: This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2004 through June 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 4Q 2004 or later. Smith International's hammer was tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek re-tested the ''optimized'' fluid hammer provided by Smith International during April 2004. Many improvements in mud hammer rates of penetration were noted over Phase 1 benchmark testing from November 2002. (2) Shell Exploration and Production in The Hague was briefed on various drilling performance projects including Task 8 ''Cutter Impact Testing''. Shell interest and willingness to assist in the test matrix as an Industry Advisor is appreciated. (3) TerraTek participated in a DOE/NETL Review meeting at Morgantown on April 15, 2004. The discussions were very helpful and a program related to the Mud Hammer optimization project was noted--Terralog modeling work on percussion tools. (4) Terralog's Dr. Gang Han witnessed some of the full-scale optimization testing of the Smith International hammer in order to familiarize him with downhole tools. TerraTek recommends that modeling first start with single cutters/inserts and progress in complexity. (5) The final equipment problem on the impact testing task was resolved through the acquisition of a high data rate laser based displacement instrument. (6) TerraTek provided Novatek much engineering support for the future re-testing of their optimized tool. Work was conducted on slip ring [electrical] specifications and tool collar sealing in the testing vessel with a reconfigured flow system on Novatek's collar.
Date: July 1, 2004
Creator: Judzis, Arnis
Partner: UNT Libraries Government Documents Department

Synthetic drilling muds: Environmental gain deserves regulatory recognition

Description: Efficient drilling technology is essential to meet the needs of the oil industry. Both the challenges of new oil provinces, especially in offshore waters, and the demands for efficient environmental protection have driven the development of new technology. Drilling mud is a key factor influencing drilling technology use in modern drilling operations. New oil industry developments involve directional and horizontal drilling as well as drilling in frontier areas at greater and greater depths. Such capabilities and conditions demand careful attention to the selection and engineering of efficient mud systems.
Date: June 1, 1995
Creator: Burke, C.J. & Veil, J.A.
Partner: UNT Libraries Government Documents Department

ADVANCED CUTTINGS TRANSPORT STUDY

Description: This report includes a review of the progress made in ACTF Flow Loop development and research during 90 days pre-award period (May 15-July 14, 1999) and the following three months after the project approval date (July15-October 15, 1999) The report presents information on the following specific subjects; (a) Progress in Advanced Cuttings Transport Facility design and development, (b) Progress report on the research project ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress report on the research project ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress report on the research project ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress report on the research project ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Progress report on the instrumentation tasks (Tasks 11 and 12) (g) Activities towards technology transfer and developing contacts with oil and service company members.
Date: October 15, 1999
Creator: Kuru, Ergun; Miska, Stefan; Takach, Nicholas; Ashenayi, Kaveh; Kane, Gerald; Volk, Len et al.
Partner: UNT Libraries Government Documents Department

OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

Description: This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2003 through June 2003. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). Accomplishments included the following: (1) Hughes Christensen has recently expressed interest in the possibility of a program to examine cutter impact testing, which would be useful in a better understanding of the physics of rock impact. Their interest however is not necessarily fluid hammers, but to use the information for drilling bit development. (2) Novatek (cost sharing supplier of tools) has informed the DOE project manager that their tool may not be ready for ''optimization'' testing late summer 2003 (August-September timeframe) as originally anticipated. During 3Q Novatek plans to meet with TerraTek to discuss progress with their tool for 4Q 2003 testing. (3) A task for an addendum to the hammer project related to cutter impact studies was written during 2Q 2003. (4) Smith International internally is upgrading their hammer for the optimization testing phase. One currently known area of improvement is their development program to significantly increase the hammer blow energy.
Date: July 1, 2003
Creator: Judzis, Arnis
Partner: UNT Libraries Government Documents Department