129 Matching Results

Search Results

Advanced search parameters have been applied.

Comparing Linear Microinstability of the National Compact Stellarator Expriment and a Shaped Tokamak

Description: One metric for comparing con nement properties of di erent magnetic fusion energy con gurations is the linear critical gradient of drift wave modes. The critical gradient scale length determines the ratio of the core to pedestal temperature when a plasma is limited to marginal stability in the plasma core. The gyrokinetic turbulence code GS2 was used to calculate critical temperature gradients for the linear, collisionless ion tem- perature gradient (ITG) mode in the National Compact Stellarator Experiment (NCSX) and a prototypical shaped tokamak, based on the pro les of a JET H-mode shot and the stronger shaping of ARIES-AT. While a concern was that the narrow cross section of NCSX at some toroidal locations would result in steep gradients that drive instabilities more easily, it is found that other stabilizing e ects of the stellarator con guration o set this so that the normalized critical gradients for NCSX are competitive with or even better than for the tokamak. For the adiabatic ITG mode, NCSX and the tokamak had similar critical gradients, though beyond marginal stability, NCSX had larger growth rates. However, for the kinetic ITG mode, NCSX had a higher critical gradient and lower growth rates until a/LT ≈#25; 1:5 a/LT;crit, when it surpassed the tokamak's. A discussion of the results presented with respect to a/LT vs R/LT is included.
Date: November 20, 2012
Creator: J.A. Baumgaertel, G.W. Hammett and D.R. Mikkelsen
Partner: UNT Libraries Government Documents Department

An Analytic Study of the Perpendicularly Propagating Electromagnetic Drift Instabilities in the Magnetic Reconnection Experiment

Description: A local linear theory is proposed for a perpendicularly propagating drift instability driven by relative drifts between electrons and ions. The theory takes into account local cross-field current, pressure gradients and modest collisions as in the Magnetic Reconnection Experiment (MRX) [10]. The unstable waves have very small group velocities in the direction of the pressure gradient, but have a large phase velocity near the relative drift velocity between electrons and ions in the direction of cross-field current. By taking into account the electron-ion collisions and applying the theory in the Harris sheet, we establish that this instability could be excited near the center of the Harris sheet and have enough efoldings to grow to large amplitude before it propagates out of the unstable region. Comparing with the other magnetic reconnection related instabilities (LHDI, MTSI et.) studied previously, we believe the instability we find is a favorable candidate to produce anomalous resistivity because of its unique wave characteristics, such as electromagnetic component, large phase velocity, and small group velocity in the cross current layer direction.
Date: December 3, 2008
Creator: Wang, Y.; Kulsrud, R. & Ji, H.
Partner: UNT Libraries Government Documents Department

Gyrokinetic Studies of the Effect of Beta on Drift-wave Stability in NCSX

Description: The gyrokinetic turbulence code GS2 was used to investigate the effects of plasma β on linear, collisionless ion temperature gradient (ITG) modes and trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX) geometry. Plasma β affects stability in two ways: through the equilibrium and through magnetic fluctuations. The first was studied here by comparing ITG and TEM stability in two NCSX equilibria of differing β values, revealing that the high β equilibrium was marginally more stable than the low β equilibrium in the adiabatic-electron ITG mode case. However, the high β case had a lower kinetic-electron ITG mode critical gradient. Electrostatic and electromagnetic ITG and TEM mode growth rate dependencies on temperature gradient and density gradient were qualitatively similar. The second β effect is demonstrated via electromagnetic ITG growth rates' dependency on GS2's β input parameter. A linear benchmark with gyrokinetic codes GENE and GKV-X is also presented.
Date: September 25, 2012
Creator: J.A. Baumgaertel, G.W. Hammett, D.R. Mikkelsen, M. Nunami, and P. Xanthopoulos
Partner: UNT Libraries Government Documents Department

Improved Conservation Properties for Particle-in-cell Simulations with Kinetic Electrons

Description: It is shown that a simple algorithm which exactly segregates between adiabatic and non-adiabatic electrons in particle-in-cell simulations of drift modes yields excellent conservation properties (e.g. particle number, energy) compared to the conventional df scheme. The removal of the free streaming term in the evolution of the marker weight is shown to be responsible for the improved linear and nonlinear properties of the simulated plasma.
Date: June 19, 2003
Creator: Lewandowski, J.L.V.
Partner: UNT Libraries Government Documents Department

Reduced-Order Model Based Feedback Control For Modified Hasegawa-Wakatani Model

Description: In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modi ed Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in ow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then a modelbased feedback controller is designed for the reduced order model using linear quadratic regulators (LQR). Finally, a linear quadratic gaussian (LQG) controller, which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHW equations to stabilize the equilibrium and suppress the transition to drift-wave induced turbulence.
Date: January 28, 2013
Creator: I.R. Goumiri, C.W. Rowley, Z. Ma, D.A. Gates, J.A. Krommes and J.B. Parker
Partner: UNT Libraries Government Documents Department

Theory of Fine-scale Zonal Flow Generation From Trapped Electron Mode Turbulence

Description: Most existing zonal flow generation theory has been developed with a usual assumption of qrρθ¡ << 1 (qr is the radial wave number of zonal flow, and ρθ¡ is the ion poloidal gyrora- dius). However, recent nonlinear gyrokinetic simulations of trapped electron mode (TEM) turbulence exhibit a relatively short radial scale of the zonal flows with qrρθ¡ ~ 1 [Z. Lin et al., IAEA-CN/TH/P2-8 (2006); D. Ernst et al., Phys. Plasmas 16, 055906 (2009)]. This work reports an extension of zonal flow growth calculation to this short wavelength regime via the wave kinetics approach. A generalized expression for the polarization shielding for arbitrary radial wavelength [Lu Wang and T.S. Hahm, to appear in Phys. Plasmas (2009)] which extends the Rosenbluth-Hinton formula in the long wavelength limit is applied.
Date: June 11, 2009
Creator: Hahm, Lu Wang and T.S.
Partner: UNT Libraries Government Documents Department

Comparison of Microinstability Properties for Stellarator Magnetic Geometries

Description: The microinstability properties of seven distinct magnetic geometries corresponding to different operating and planned stellarators with differing symmetry properties are compared. Specifically, the kinetic stability properties (linear growth rates and real frequencies) of toroidal microinstabilities (driven by ion temperature gradients and trapped-electron dynamics) are compared, as parameters are varied. The familiar ballooning representation is used to enable efficient treatment of the spatial variations along the equilibrium magnetic field lines. These studies provide useful insights for understanding the differences in the relative strengths of the instabilities caused by the differing localizations of good and bad magnetic curvature and of the presence of trapped particles. The associated differences in growth rates due to magnetic geometry are large for small values of the temperature gradient parameter n identical to d ln T/d ln n, whereas for large values of n, the mode is strongly unstable for all of the different magnetic geometries.
Date: June 16, 2005
Creator: Rewoldt, G.; Ku, L.-P. & Tang, W.M.
Partner: UNT Libraries Government Documents Department

Comparison of Linear Microinstability Calculations of Varying Input Realism

Description: The effect of varying ''input realism'' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results.
Date: September 8, 2003
Creator: Rewoldt, G.
Partner: UNT Libraries Government Documents Department

Collisional Drift Waves in Stellarator Plasmas

Description: A computational study of resistive drift waves in the edge plasma of a stellarator with an helical magnetic axis is presented. Three coupled field equations, describing the collisional drift wave dynamics in the linear approximation, are solved as an initial-value problem along the magnetic field line. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.
Date: October 7, 2003
Creator: Lewandowski, J.L.V.
Partner: UNT Libraries Government Documents Department

A new paradigm for 3D collisionless magnetic reconnection.

Description: A new paradigm is emerging for 3D magnetic reconnection where the interaction of reconnection processes with current aligned instabilities plays an important role. According to the new paradigm, the initial equilibrium is rendered unstable by current aligned instabilities (lower-hybrid drift instability first, drift-kink instability later) and the non-uniform development of kinking modes leads to a compression of magnetic field lines in certain locations and a rarefaction in others. The areas where the flow is compressional are subjected to a driven reconnection process on the time scale of the driving mechanism (the kink mode). In the present paper we illustrate this series of event with a selection of simulation results.
Date: January 1, 2002
Creator: Lapenta, G. M. (Giovanni M.)
Partner: UNT Libraries Government Documents Department

Turbulent fluctuations in the main core of TFTR plasmas with negative magnetic shear

Description: Turbulent fluctuations in plasmas with reversed magnetic shear have been investigated in TFTR. Under intense auxiliary heating, these plasmas are observed to bifurcate into two states with different transport properties. In the state with better confinement, it has been found that the level of fluctuations is very small throughout most of the region with negative shear. By contrast, the state with lower confinement is characterized by large bursts of fluctuations which suggest a competition between the driving and the suppression of turbulence. These results are consistent with the suppression of turbulence by the E x B velocity shear.
Date: September 1997
Creator: Mazzucato, E.; Beer, M. A.; Bell, M. G. & Batha, S. H.
Partner: UNT Libraries Government Documents Department

Measurement of Lower-hybrid Drift Turbulence in a Reconnecting Current Sheet

Description: We present a detailed study of fluctuations in a laboratory current sheet undergoing magnetic reconnection. The measurements reveal the presence of lower-hybrid-frequency range fluctuations on the edge of current sheets produced in the Magnetic Reconnection Experiment (MRX). The measured fluctuation characteristics are consistent with theoretical predictions for the lower-hybrid drift instability (LHDI). Our observations suggest that the LHDI does not provide any significant turbulent resistivity in MRX current sheets.
Date: June 20, 2001
Creator: Carter, T.A.; Ji, H.; Trintchouk, F.; Yamada, M. & Kulsrud, R.M.
Partner: UNT Libraries Government Documents Department

Structure of parallel-velocity-shear driven mode in toroidal plasmas

Description: It is shown that the Fourier-ballooning representation is appropriate for the study of short wavelength drift-like perturbation in toroidal plasmas with a parallel velocity shear (PVS). The radial structure of the mode driven by a PVS is investigated in a torus. The Reynolds stress created by PVS turbulence and proposed as one of the sources for a sheared poloidal plasma rotation is analyzed. It is demonstrated that a finite ion temperature may strongly enhance the Reynolds stress creation ability from PVS driven turbulence. The correlation of this observation with the requirement that ion heating power be higher than a threshold value for the formation of an internal transport barrier is discussed.
Date: September 15, 1998
Creator: Dong, J.Q.; Xu, W.B.; Zhang, Y.Z. & Horton, W.
Partner: UNT Libraries Government Documents Department

Drift Mode Calculations in Nonaxisymmetric Geometry

Description: A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for nonaxisymmetric (stellarator) geometry, in the electrostatic limit. This calculation is a comprehensive solution of the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities, with a model collision operator. Results for toroidal drift waves destabilized by temperature gradients and/or trapped particle dynamics are presented, using three-dimensional magnetohydrodynamic equilibria generated as part of a design effort for a quasiaxisymmetric stellarator. Comparisons of these results with those obtained for typical tokamak cases indicate that the basic trends are similar.
Date: July 1, 1999
Creator: Rewoldt, G.; Ku, L.-P.; Cooper, W.A. & Tang, W.M.
Partner: UNT Libraries Government Documents Department

Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities

Description: In plasma physics, linear instability calculations can be implemented either as initial value calculations or as eigenvalue calculations. Here, comparisons between comprehensive linear gyrokinetic calculations employing the ballooning formalism for high-n (toroidal mode number) toroidal instabilities are described. One code implements an initial value calculation on a grid using a Lorentz collision operator and the other implements an eigenvalue calculation with basis functions using a Krook collision operator. An electrostatic test case with artificial parameters for the toroidal drift mode destabilized by the combined effects of trapped particles and an ion temperature gradient has been carefully analyzed both in the collisionless limit and with varying collisionality. Good agreement is found. Results from applied studies using parameters from the Tokamak Fusion Test Reactor (TFTR) experiment are also compared.
Date: April 1, 1994
Creator: Kotschenreuther, M.; Rewoldt, G. & Tang, W. M.
Partner: UNT Libraries Government Documents Department

Studies of instability and transport in tokamak plasmas with very weak magnetic shear

Description: Ion temperature gradient (ITG or {eta}{sub i}) driven microinstabilities are studied, using kinetic theory, for tokamak plasmas with very weak (positive or negative) magnetic shear (VWS). The gradient of magnetic shear as well as the effects of parallel and perpendicular velocity shear (v{prime}{sub {parallel}} and v{prime}{sub E}) are included in the defining equations. Two eigenmodes: the double (D) and the global (G) are found to coexist. Parametric dependence of these instabilities, and of the corresponding quasilinear transport is systematically analyzed. It is shown that, in VWS plasmas, a parallel velocity shear (PVS) may stabilize or destabilize the modes, depending on the individual as well as the relative signs of PVS and of the gradient of magnetic shear. The quasilinear transport induced by the instabilities may be significantly reduced with PVS in VWS plasmas. The v{prime}{sub E} values required to completely suppress the instabilities are much lower in VWS plasmas than they are in normal plasmas. Possible correlations with tokamak experiments are discussed.
Date: April 1, 1997
Creator: Dong, J.Q.; Zhang, Y.Z. & Mahajan, S.M.
Partner: UNT Libraries Government Documents Department

Microinstability properties of negative magnetic shear discharges in the Tokamak Fusion Test Reactor and DIII-D

Description: The microinstability properties of discharges with negative (reversed) magnetic shear in the Tokamak Fusion Test Reactor (TFTR) and DIII-D experiments with and without confinement transitions are investigated. A comprehensive kinetic linear eigenmode calculation employing the ballooning representation is employed with experimentally measured profile data, and using the corresponding numerically computed magnetohydrodynamic (MHD) equilibria. The instability considered is the toroidal drift mode (trapped-electron-{eta}{sub i} mode). A variety of physical effects associated with differing q-profiles are explained. In addition, different negative magnetic shear discharges at different times in the discharge for TFTR and DIII-D are analyzed. The effects of sheared toroidal rotation, using data from direct spectroscopic measurements for carbon, are analyzed using comparisons with results from a two-dimensional calculation. Comparisons are also made for nonlinear stabilization associated with shear in E{sub r}/RB{sub {theta}}. The relative importance of changes in different profiles (density, temperature, q, rotation, etc.) on the linear growth rates is considered.
Date: March 1997
Creator: Rewoldt, G.; Tang, W. M. & Lao, L. L.
Partner: UNT Libraries Government Documents Department

Drift mode calculations for the Large Helical Device

Description: A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for a case for the Large Helical Device (LHD) [A.Iiyoshi, et al., Plasma Physics and Controlled Nuclear Fusion Research, 1998, Nucl.Fusion 39, 1245 (1999)]. This calculation retains the important effects in the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities in the electrostatic limit. Results for toroidal drift waves destabilized by trapped particle dynamics and ion temperature gradients are presented, using three-dimensional magnetohydrodynamics equilibria reconstructed from experimental measurements. The effects of helically-trapped particles and helical curvature are investigated.
Date: June 8, 2000
Creator: Rewoldt, G.; Ku, L.-P.; Tang, W. M.; Sugama, H.; Nakajima, N.; Watanabe, K. Y. et al.
Partner: UNT Libraries Government Documents Department

Zonal flow excitation by drift waves in toroidal plasmas

Description: Recent 3D gyrokinetic and gyrofluid simulations in toroidal plasmas have demonstrated that zonal flows play a crucial role in regulating the nonlinear evolution of electrostatic drift-wave instabilities such as the ion temperature gradient (ITG) modes and, as a consequence, the level of the anomalous ion thermal transport, and that zonal flows could be spontaneously excited by ITG turbulence, suggesting parametric instability processes as the generation mechanism. Diamond et. al. have proposed the modulational instability of drift-wave turbulence ( plasmons ) in a slab-geometry treatment.
Date: June 13, 2000
Creator: Chen, L; Lin, Z. & White, R.
Partner: UNT Libraries Government Documents Department

Numerical tokamak turbulence project (OFES grand challenge)

Description: The primary research objective of the Numerical Tokamak Turbulence Project (NTTP) is to develop a predictive ability in modeling turbulent transport due to drift-type instabilities in the core of tokamak fusion experiments, through the use of three-dimensional kinetic and fluid simulations and the derivation of reduced models.
Date: August 27, 1999
Creator: Beer, M; Cohen, B I; Crotinger, J; Dawson, J; Decyk, V; Dimits, A M et al.
Partner: UNT Libraries Government Documents Department