443 Matching Results

Search Results

Advanced search parameters have been applied.

Erratic Dislocations within Funnel Defects in AlN Templates for AlGaNEpitaxial Layer Growth

Description: We report our transmission electron microscopy observations of erraticdislocation behavior within funnel-like defects in the top of AlN templates filled withAlGaN from an overlying epitaxial layer. This dislocation behavior is observed inmaterial where phase separation is also observed. Several bare AlN templates wereexamined to determine the formation mechanism of the funnels. Our results suggest that they are formed prior to epitaxial layer deposition due to the presence of impuritiesduring template re-growth. We discuss the erratic dislocation behavior in relation to thepresence of the phase-separated material and the possible effects of these defects on the optoelectronic properties.
Date: March 13, 2009
Creator: Hawkridge, Michael E.; Liliental-Weber, Zuzanna; Jin Kim, Hee; Choi, Suk; Yoo, Dongwon; Ryou, Jae-Hyun et al.
Partner: UNT Libraries Government Documents Department

TEM Study of Fracturing in Spherical and Plate-like LiFePO4Particles

Description: An investigation of fracturing in LiFePO{sub 4} particles as a function of the particle morphology and history is presented. Two types of samples, one subjected to electrochemical cycling and another to chemical delithiation are compared. We observe the formation of micro fractures parallel to low indexed lattice planes in both samples. The fracture surfaces are predominantly parallel to (100) planes in the chemically delithiated powder and (100) and (010) planes in the electrochemically cycled powder. A consideration of the threshold stresses for dislocation glide shows that particle geometry plays an important role in the observed behavior.
Date: December 20, 2007
Creator: Gabrisch, H.; Wilcox, J. & Doeff, M.M.
Partner: UNT Libraries Government Documents Department

Linking continuum mechanics and 3D discrete dislocation simulations

Description: A technique is developed for linking the methods of discrete dislocation dynamics simulation and finite element to treat elasto-plasticity problems. The overall formulation views the plastically deforming crystal as an elastic crystal with continuously changing dislocation microstructure which is tracked by the numerical dynamics simulation. The FEM code needed in this regard is based on linear elasticity only. This formulation presented here is focused on a continuous updating of the outer shape of the crystal, for possible regeneration of the FEM mesh, and adjustment of the surface geometry, in particular the surface normal. The method is expected to be potentially applicable to the nano- indentation experiments, where the zone around the indenter-crystal contact undergoes significant permanent deformation, the rigorous determination of which is very important to the calculation of the indentation print area and in turn, the surface hardness. Furthermore, the technique is expected to account for the plastic history of the surface displacement under the indenter. Other potential applications are mentioned in the text.
Date: October 18, 1998
Creator: El-Azab, A. A. & Fivel, M.
Partner: UNT Libraries Government Documents Department

Connecting the micro to the mesoscale: review and specific examples

Description: Historically, dislocation are thought of and treated as dual objects. The large lattice distortions inside the core region warrant an atomistic treatment, whereas the slightly distorted crystal outside of the core is well represented within a linear elastic framework. Continuum dislocation theory is powerful and elegant. Yet, it is unable to fully account for the structural differentiation of dislocation behavior, say, within the same crystallography class. The source of these structural variations is mostly in the dislocation core (see [1] for an excellent review). In the past several years, the gap between the two approaches (atomistic and continuum-mesoscopic) for modeling dislocation behavior has started to close, owing to the overlap of the time and length scales accessible to them [2]. The current trend in dislocation modeling is to try to abstract the local rules of dislocation behavior, including their mobility and interactions, from the atomistic simulations and then incorporate these rules in a properly defined continuum approach, e.g. Dislocation Dynamics. The hope is that, by combining the two descriptions, a truly predictive computational framework can be obtained. For this emerging partnership to develop, some interesting issues need to be resolved concerning both physics and computations. It is from this angle that I will try to discuss several recent developments in atomistic simulations that may have serious implications for connecting atomistic and mesoscopic descriptions of dislocations. These are intended to support my speculations on what can and should be expected from atomistic calculations in the near future, for further development of dislocation theory of crystal plasticity.
Date: August 26, 1999
Creator: Bulatov, V
Partner: UNT Libraries Government Documents Department

Interaction between point defects and edge dislocation in BCC iron

Description: We present results of atomistic simulations of the interaction between self interstitial atoms and vacancies with edge dislocations in BCC iron. The calculations are carried out using molecular dynamics with an energy minimization scheme based on the quasi-Newton approach and use the Finnis-Sinclair interatomic potential for BCC iron developed by Ackland et al. Large anisotropy in the strain field of self interstitials is observed and it causes strong interaction with edge dislocations even when the defect is located on the dislocation glide plane. For vacancies, the relaxation volume is smaller and much more isotropic, which results in a far weaker interaction with the dislocation. A temperature dependent capture radius for vacancies and self interstitials is extracted from the simulations. The difference between the capture radii of vacancies and self interstitials is used to define the sink strength of the dislocation. Large deviations are observed from the predictions of elasticity based on treating point defects as isotropic dilatational centers. Further, the capture radius of edge dislocations in BCC iron is observed to be small and is of the order of l-3 nm for self interstitials.
Date: October 12, 1998
Creator: Diaz de la Rubia, T. & Shastry, V.
Partner: UNT Libraries Government Documents Department

Dislocation Multiplication in the Early Stage of Deformation in Mo Single Crystals

Description: Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied using transmission electron microscopy (TEM) techniques in order to investigate dislocation multiplication mechanisms in the early stage of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase after compressing for a total strain of 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. The jog height can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. The coalescence of superjogs results in an increase of both link length and jog height. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This ''dynamic'' dislocation multiplication source is suggested to be crucial for the dislocation multiplication in the early stage of plastic deformation in Mo.
Date: March 2, 2000
Creator: Hsiung, L. & Lassila, D.H.
Partner: UNT Libraries Government Documents Department

Dynamic Dislocation Mechanisms For the Anomalous Slip in a Single-Crystal BCC Metal Oriented for "Single Slip"

Description: Dislocation substructures of high-purity Mo single crystals deformed under uniaxial compression at room temperature to an axial strain of 0.6% were investigated in order to elucidate the underlying mechanisms for the {l_brace}0{bar 1}1{r_brace} anomalous slip in bcc metals [1], which is also known as the violation of Schmid law [2]. The test sample was oriented with the stress axis parallel to a nominal ''single-slip'' orientation of [{bar 2} 9 20], in which ({bar 1}01) [111] is the primary slip system that has a maximum Schmid factor (m = 0.5), which requires the lowest stress to operate among the twelve {l_brace}{bar 1}10{r_brace} <111> slip systems. Nevertheless, the recorded stress-strain curve reveals no easy-glide or single-slip stage; work hardening starts immediately after yielding. Moreover, the result of slip trace analysis indicates the occurrence of anomalous slip on both the (011) and (0{bar 1}1) planes, which according to the Schmid law requires relatively higher stresses to operate. TEM examinations of dislocation structures formed on the (101) primary slip plane reveal that in addition to the ({bar 1}01) [111] slip system, the coplanar ({bar 1}01) [1{bar 1}1] slip system which has a much smaller Schmid factor (m = 0.167) is also operative. Similarly, (0{bar 1}1) [111] (m = 0.25) is cooperative with the coplanar (0{bar 1}1) [{bar 1}11] slip system (m = 0.287) on the (0{bar 1}1) slip plane, and (011) [1{bar 1}1] (m = 0.222) is cooperative with the coplanar (011) [11{bar 1}] slip system (m = 0.32) on the (011) plane. The occurrence of {l_brace}0{bar 1}1{r_brace} anomalous slip is accordingly proposed to be originated from the cooperative dislocation motion of the {+-} 1/2 [111] and {+-} 1/2 [1{bar 1}1] dislocations on the ({bar 1}01) slip plane; the mutual interaction and blocking of {+-} 1/2 [111] and {+-} 1/2 [1{bar 1}1] dislocations not ...
Date: January 11, 2007
Creator: Hsiung, L & La Cruz, C
Partner: UNT Libraries Government Documents Department

Rate-Controlling Mechanisms in Five-Power-Law Creep

Description: OAK-B135 Rate-Controlling Mechanisms in Five-Power-Law Creep. The initial grant emphasized the rate-controlling processes for five power-law creep. The effort has six aspects: (1) Theory of Taylor hardening from the Frank dislocation network in five power law substructures. (2) The dual dynamical and hardening nature of dislocations in five power law substructures. (3) Determination of the existence of long-range internal stress in five-power law creep dislocation substructures. (4) Dynamic recovery mechanisms associated with dislocation heterogeneities during five power law creep. (5) Versatility of five power law creep concept to other (hcp) crystal structures. (6) Writing of a book on ''Fundamental of Creep in Metals and Alloys'' by M.E. Kassner and Maria-Teresa Perez-Frado (postdoctoral scholar, funded by this project) Elsevier Press, 2004, in press. These areas are consistent with the original goals of this project as delineated in the original proposal to Basic Energy Sciences. The progress in each of these areas will be discussed separately and there will be an attempt to tie each aspect together so as to allow a summary regarding the conclusions with respect to the rate-controlling mechanisms of five power-law creep.
Date: April 20, 2004
Creator: Kassner, Michael E.
Partner: UNT Libraries Government Documents Department

LDA Calculations of Dislocation Mobility in Fe & Mo

Description: This Project was a collaborative effort between Murray Daw (Clemson) and Daryl Chrzan (LBNL/UCB). The main goal of this project was to accomplish the first-ever first principles calculations of the structure of the screw dislocation in Fe and to study the effects of stress and magnetization. The calculations were completed and reported at conferences. During the work on this project, the collaboration also tackled an important related question - the effect of periodic boundary conditions in dislocation dalculations on the stress-state. The solution to the problem for this particular case has had much broader impact than the specific results of the calculation in iron. This technique was published in Computational Materials Science, and has been applied recently to the study of dislocations on nanotubes (submitted). Finally, the collaboration considered the application of scaling formalism to a simple problem of dislocation emission from a single, stress-actived source. The result is a very elegant, compact solution to a simple textbook problem, which was published in Phil Mag. This result lays the foundation for continuing work on applying scaling formalism to dynamics of more complex dislocation problems.
Date: July 13, 2007
Creator: Daw, Murray S. & Chrzan, Daryl
Partner: UNT Libraries Government Documents Department

New mechanism for dislocation blocking in strained layer epitaxial growth

Description: Dislocation interactions play a critical role in plasticity and heteroepitaxial strain relaxation. We use real time transmission electron microscopy observations of the interaction between threading and misfit dislocations in SiGe heterostructures to investigate interactions quantitatively. In addition to the expected long range blocking of threading segments, we observe a new short range mechanism which is significantly more effective. Simulations show that this reactive blocking occurs when two dislocations with the same Burgers vector reconnect.
Date: September 14, 1999
Creator: Stach, E.A.; Schwarz, K.W.; Hull, R.; Ross, F.M. & Tromp, R.M.
Partner: UNT Libraries Government Documents Department

Quantitative in situ nanoindentation of aluminum films

Description: We report the development of a method for quantitative, in situ nanoindentation in an electron microscope and its application to study the onset of deformation during the nanoindentation of aluminum films. The load-displacement curve developed during in situ nanoindentation shows the characteristic ''staircase'' instability at the onset of plastic deformation. The instability corresponds to the first appearance of dislocations in previously defect-free grains, and occurs at a force near that measured in conventional nanoindentation experiments on similarly oriented Al grains. Plastic deformation proceeds through the formation and propagation of prismatic loops punched into the material, and half-loops that emanate from the sample surface. This new experimental technique permits the direct observation of the microstructural mechanisms that operate at the onset of deformation.
Date: April 4, 2001
Creator: Minor, Andrew M.; Stach, Eric A. & Morris, J. W., Jr.
Partner: UNT Libraries Government Documents Department

Comparison between structural properties of bulk GaN grown under high N pressure and GaN grown by other methods

Description: In this paper defects formed in GaN grown by different methods are reviewed. Formation of particular defects are often related to the crystallographic direction in which the crystals grow. For bulk crystals the highest growth rates are observed for directions perpendicular to the c-axis. Threading dislocations and nanopipes along the c-axis are not formed in these crystals, but polarity of the growth direction plays a role concerning defects that are formed and surface roughness. For growth of homoepitaxial layers, where growth is forced to take place in the c-direction threading dislocations are formed and their density is related to the purity of constituents used for growth and to substrate surface inhomogeneities. In heteroepitaxial layers two other factors: lattice mismatch and thermal expansion mismatch are related to the formation of dislocations. Doping of crystals can also lead to formation of defects characteristic for a specific dopant. This type of defects tends to be growth method independent but can depend on growth polarity.
Date: July 31, 2002
Creator: Liliental-Weber, Z.; Jasinski, J. & Washburn, J.
Partner: UNT Libraries Government Documents Department

DISLOCATION MODELS FOR STRENGTHENING IN NANOSTRUCTURED METALLIC MULTI-LAYERS

Description: Ultra-high strength metallic multilayers are ideal for investigating the effects of length scales in plastic deformation of metallic materials. Experiments on model systems show that the strengths of these materials increase with decreasing bilayer period following the Hall-Petch model. However, as the layer thickness is reduced to the nm-scale, the number of dislocations in the pile-up approaches one and the pile-up based Hall-Petch model ceases to apply. For nm-scale semi-coherent multilayers, we hypothesize that plastic flow occurs by the motion of single dislocation loops, initially in the softer layer, that deposit misfit type dislocation arrays at the interface and transfer load to the harder phase. The stress concentration eventually leads to slip in the harder phase, overcoming the resistance from the misfit arrays at the interface. A model is developed within the framework of classical dislocation theory to estimate the strengthening from this mechanism. The model predictions are compared with experimentally measured strengths.
Date: December 1, 2000
Creator: MISRA, A. & HIRTH, J.
Partner: UNT Libraries Government Documents Department

Growth phenomena in the surface layer and step generation from the edges of faceted crystals

Description: The mechanism of growth step generation from the edges of faceted crystals obtained from experimental results with KDP crystals is described. It shows that growth from the crystal edges is initiated by the deviation of the edges from their crystallographic orientation and formation of incomplete shapes of singular facets. The conditions for formation of the incomplete faceted shapes during dislocation growth are considered. It is shown that the process of step generation from the edges is determined by the mutual positions of the vicinal slopes on the adjacent faces.
Date: July 29, 1999
Creator: Carman, L; Smolsky, I & Zaitseva, N P
Partner: UNT Libraries Government Documents Department

Modeling the segregation of hydrogen to lattice defects in nickel

Description: In order to better understand the effect of hydrogen on the fracture behavior of nickel, this study uses the embedded atom method (EAM) to model the segregation of hydrogen to lattice defects in nickel. The dislocations modeled include an edge, a screw, and a Lomer dislocation in the locked configuration, i.e. the Lomer-Cottrell Cock (LCL). Several coincident site lattice boundaries are also investigated, these being the {Sigma}3(112) and {Sigma}11(113) tilt boundaries. It will be shown that the trap site energies in the vicinity of both the edge and screw dislocations is only about 0.1 eV while for the LCL and all of the grain boundaries the maximum trap site energy in the vicinity of the defect is on order 0.3 eV. Using a Monte-Carlo method to a impose a hydrogen environment produces much stronger segregation of hydrogen to the deeper traps. When compared to recent experimental studies showing that a binding energy between 0.3-0.4 eV is required for trap site controlled fracture in IN903, it can be concluded that the embrittlement process is most probably associated with trapping of hydrogen to the Lomer-Cottrell Locks.
Date: May 1, 1995
Creator: Angelo, J.E.; Moody, N.R. & Baskes, M.I.
Partner: UNT Libraries Government Documents Department