787 Matching Results

Search Results

Advanced search parameters have been applied.

Erratic Dislocations within Funnel Defects in AlN Templates for AlGaNEpitaxial Layer Growth

Description: We report our transmission electron microscopy observations of erraticdislocation behavior within funnel-like defects in the top of AlN templates filled withAlGaN from an overlying epitaxial layer. This dislocation behavior is observed inmaterial where phase separation is also observed. Several bare AlN templates wereexamined to determine the formation mechanism of the funnels. Our results suggest that they are formed prior to epitaxial layer deposition due to the presence of impuritiesduring template re-growth. We discuss the erratic dislocation behavior in relation to thepresence of the phase-separated material and the possible effects of these defects on the optoelectronic properties.
Date: March 13, 2009
Creator: Hawkridge, Michael E.; Liliental-Weber, Zuzanna; Jin Kim, Hee; Choi, Suk; Yoo, Dongwon; Ryou, Jae-Hyun et al.
Partner: UNT Libraries Government Documents Department

TEM Study of Fracturing in Spherical and Plate-like LiFePO4Particles

Description: An investigation of fracturing in LiFePO{sub 4} particles as a function of the particle morphology and history is presented. Two types of samples, one subjected to electrochemical cycling and another to chemical delithiation are compared. We observe the formation of micro fractures parallel to low indexed lattice planes in both samples. The fracture surfaces are predominantly parallel to (100) planes in the chemically delithiated powder and (100) and (010) planes in the electrochemically cycled powder. A consideration of the threshold stresses for dislocation glide shows that particle geometry plays an important role in the observed behavior.
Date: December 20, 2007
Creator: Gabrisch, H.; Wilcox, J. & Doeff, M.M.
Partner: UNT Libraries Government Documents Department

Linking continuum mechanics and 3D discrete dislocation simulations

Description: A technique is developed for linking the methods of discrete dislocation dynamics simulation and finite element to treat elasto-plasticity problems. The overall formulation views the plastically deforming crystal as an elastic crystal with continuously changing dislocation microstructure which is tracked by the numerical dynamics simulation. The FEM code needed in this regard is based on linear elasticity only. This formulation presented here is focused on a continuous updating of the outer shape of the crystal, for possible regeneration of the FEM mesh, and adjustment of the surface geometry, in particular the surface normal. The method is expected to be potentially applicable to the nano- indentation experiments, where the zone around the indenter-crystal contact undergoes significant permanent deformation, the rigorous determination of which is very important to the calculation of the indentation print area and in turn, the surface hardness. Furthermore, the technique is expected to account for the plastic history of the surface displacement under the indenter. Other potential applications are mentioned in the text.
Date: October 18, 1998
Creator: El-Azab, A. A. & Fivel, M.
Partner: UNT Libraries Government Documents Department

Connecting the micro to the mesoscale: review and specific examples

Description: Historically, dislocation are thought of and treated as dual objects. The large lattice distortions inside the core region warrant an atomistic treatment, whereas the slightly distorted crystal outside of the core is well represented within a linear elastic framework. Continuum dislocation theory is powerful and elegant. Yet, it is unable to fully account for the structural differentiation of dislocation behavior, say, within the same crystallography class. The source of these structural variations is mostly in the dislocation core (see [1] for an excellent review). In the past several years, the gap between the two approaches (atomistic and continuum-mesoscopic) for modeling dislocation behavior has started to close, owing to the overlap of the time and length scales accessible to them [2]. The current trend in dislocation modeling is to try to abstract the local rules of dislocation behavior, including their mobility and interactions, from the atomistic simulations and then incorporate these rules in a properly defined continuum approach, e.g. Dislocation Dynamics. The hope is that, by combining the two descriptions, a truly predictive computational framework can be obtained. For this emerging partnership to develop, some interesting issues need to be resolved concerning both physics and computations. It is from this angle that I will try to discuss several recent developments in atomistic simulations that may have serious implications for connecting atomistic and mesoscopic descriptions of dislocations. These are intended to support my speculations on what can and should be expected from atomistic calculations in the near future, for further development of dislocation theory of crystal plasticity.
Date: August 26, 1999
Creator: Bulatov, V
Partner: UNT Libraries Government Documents Department

Dynamic Dislocation Mechanisms For the Anomalous Slip in a Single-Crystal BCC Metal Oriented for "Single Slip"

Description: Dislocation substructures of high-purity Mo single crystals deformed under uniaxial compression at room temperature to an axial strain of 0.6% were investigated in order to elucidate the underlying mechanisms for the {l_brace}0{bar 1}1{r_brace} anomalous slip in bcc metals [1], which is also known as the violation of Schmid law [2]. The test sample was oriented with the stress axis parallel to a nominal ''single-slip'' orientation of [{bar 2} 9 20], in which ({bar 1}01) [111] is the primary slip system that has a maximum Schmid factor (m = 0.5), which requires the lowest stress to operate among the twelve {l_brace}{bar 1}10{r_brace} <111> slip systems. Nevertheless, the recorded stress-strain curve reveals no easy-glide or single-slip stage; work hardening starts immediately after yielding. Moreover, the result of slip trace analysis indicates the occurrence of anomalous slip on both the (011) and (0{bar 1}1) planes, which according to the Schmid law requires relatively higher stresses to operate. TEM examinations of dislocation structures formed on the (101) primary slip plane reveal that in addition to the ({bar 1}01) [111] slip system, the coplanar ({bar 1}01) [1{bar 1}1] slip system which has a much smaller Schmid factor (m = 0.167) is also operative. Similarly, (0{bar 1}1) [111] (m = 0.25) is cooperative with the coplanar (0{bar 1}1) [{bar 1}11] slip system (m = 0.287) on the (0{bar 1}1) slip plane, and (011) [1{bar 1}1] (m = 0.222) is cooperative with the coplanar (011) [11{bar 1}] slip system (m = 0.32) on the (011) plane. The occurrence of {l_brace}0{bar 1}1{r_brace} anomalous slip is accordingly proposed to be originated from the cooperative dislocation motion of the {+-} 1/2 [111] and {+-} 1/2 [1{bar 1}1] dislocations on the ({bar 1}01) slip plane; the mutual interaction and blocking of {+-} 1/2 [111] and {+-} 1/2 [1{bar 1}1] dislocations not ...
Date: January 11, 2007
Creator: Hsiung, L & La Cruz, C
Partner: UNT Libraries Government Documents Department

LDA Calculations of Dislocation Mobility in Fe & Mo

Description: This Project was a collaborative effort between Murray Daw (Clemson) and Daryl Chrzan (LBNL/UCB). The main goal of this project was to accomplish the first-ever first principles calculations of the structure of the screw dislocation in Fe and to study the effects of stress and magnetization. The calculations were completed and reported at conferences. During the work on this project, the collaboration also tackled an important related question - the effect of periodic boundary conditions in dislocation dalculations on the stress-state. The solution to the problem for this particular case has had much broader impact than the specific results of the calculation in iron. This technique was published in Computational Materials Science, and has been applied recently to the study of dislocations on nanotubes (submitted). Finally, the collaboration considered the application of scaling formalism to a simple problem of dislocation emission from a single, stress-actived source. The result is a very elegant, compact solution to a simple textbook problem, which was published in Phil Mag. This result lays the foundation for continuing work on applying scaling formalism to dynamics of more complex dislocation problems.
Date: July 13, 2007
Creator: Daw, Murray S. & Chrzan, Daryl
Partner: UNT Libraries Government Documents Department

Interaction between point defects and edge dislocation in BCC iron

Description: We present results of atomistic simulations of the interaction between self interstitial atoms and vacancies with edge dislocations in BCC iron. The calculations are carried out using molecular dynamics with an energy minimization scheme based on the quasi-Newton approach and use the Finnis-Sinclair interatomic potential for BCC iron developed by Ackland et al. Large anisotropy in the strain field of self interstitials is observed and it causes strong interaction with edge dislocations even when the defect is located on the dislocation glide plane. For vacancies, the relaxation volume is smaller and much more isotropic, which results in a far weaker interaction with the dislocation. A temperature dependent capture radius for vacancies and self interstitials is extracted from the simulations. The difference between the capture radii of vacancies and self interstitials is used to define the sink strength of the dislocation. Large deviations are observed from the predictions of elasticity based on treating point defects as isotropic dilatational centers. Further, the capture radius of edge dislocations in BCC iron is observed to be small and is of the order of l-3 nm for self interstitials.
Date: October 12, 1998
Creator: Diaz de la Rubia, T. & Shastry, V.
Partner: UNT Libraries Government Documents Department

Rate-Controlling Mechanisms in Five-Power-Law Creep

Description: OAK-B135 Rate-Controlling Mechanisms in Five-Power-Law Creep. The initial grant emphasized the rate-controlling processes for five power-law creep. The effort has six aspects: (1) Theory of Taylor hardening from the Frank dislocation network in five power law substructures. (2) The dual dynamical and hardening nature of dislocations in five power law substructures. (3) Determination of the existence of long-range internal stress in five-power law creep dislocation substructures. (4) Dynamic recovery mechanisms associated with dislocation heterogeneities during five power law creep. (5) Versatility of five power law creep concept to other (hcp) crystal structures. (6) Writing of a book on ''Fundamental of Creep in Metals and Alloys'' by M.E. Kassner and Maria-Teresa Perez-Frado (postdoctoral scholar, funded by this project) Elsevier Press, 2004, in press. These areas are consistent with the original goals of this project as delineated in the original proposal to Basic Energy Sciences. The progress in each of these areas will be discussed separately and there will be an attempt to tie each aspect together so as to allow a summary regarding the conclusions with respect to the rate-controlling mechanisms of five power-law creep.
Date: April 20, 2004
Creator: Kassner, Michael E.
Partner: UNT Libraries Government Documents Department

Dislocation Multiplication in the Early Stage of Deformation in Mo Single Crystals

Description: Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied using transmission electron microscopy (TEM) techniques in order to investigate dislocation multiplication mechanisms in the early stage of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase after compressing for a total strain of 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. The jog height can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. The coalescence of superjogs results in an increase of both link length and jog height. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This ''dynamic'' dislocation multiplication source is suggested to be crucial for the dislocation multiplication in the early stage of plastic deformation in Mo.
Date: March 2, 2000
Creator: Hsiung, L. & Lassila, D.H.
Partner: UNT Libraries Government Documents Department

New mechanism for dislocation blocking in strained layer epitaxial growth

Description: Dislocation interactions play a critical role in plasticity and heteroepitaxial strain relaxation. We use real time transmission electron microscopy observations of the interaction between threading and misfit dislocations in SiGe heterostructures to investigate interactions quantitatively. In addition to the expected long range blocking of threading segments, we observe a new short range mechanism which is significantly more effective. Simulations show that this reactive blocking occurs when two dislocations with the same Burgers vector reconnect.
Date: September 14, 1999
Creator: Stach, E.A.; Schwarz, K.W.; Hull, R.; Ross, F.M. & Tromp, R.M.
Partner: UNT Libraries Government Documents Department

In-Situ TEM Study of Interface Sliding and Migration in an Ultrafine Lamellar Structure

Description: The instability of interfaces in an ultrafine TiAl-({gamma})/Ti{sub 3}Al-({alpha}{sub 2}) lamellar structure by straining at room temperature has been investigated using in-situ straining techniques performed in a transmission electron microscope. The purpose of this study is to obtain experimental evidence to support the creep mechanisms based upon the interface sliding in association with a cooperative movement of interfacial dislocations previously proposed to interpret the nearly linear creep behavior observed from ultrafine lamellar TiAl alloys. The results have revealed that both the sliding and migration of lamellar interfaces can take place simultaneously as a result of the cooperative movement of interfacial dislocations.
Date: December 6, 2005
Creator: Hsiung, L M
Partner: UNT Libraries Government Documents Department

Defect reduction in gallium nitride using cantilever epitaxy.

Description: Cantilever epitaxy (CE) has been developed to produce GaN on sapphire with low dislocation densities as needed for improved devices. The basic mechanism of seeding growth on sapphire mesas and lateral growth of cantilevers until they coalesce has been modified with an initial growth step at 950 C. This step produces a gable with (11{bar 2}2) facets over the mesas, which turns threading dislocations from vertical to horizontal in order to reduce the local density above mesas. This technique has produced material with densities as low as 2-3x10{sup 7}/cm{sup 2} averaged across extended areas of GaN on sapphire, as determined with AFM, TEM and cathodoluminescence (CL). This density is about two orders of magnitude below that of conventional planar growths; these improvements suggest that locating wide-area devices across both cantilever and mesa regions is possible. However, the first implementation of this technique also produced a new defect: cracks at cantilever coalescences with associated arrays of lateral dislocations. These defects have been labeled 'dark-block defects' because they are non-radiative and appear as dark rectangles in CL images. Material has been grown that does not have dark-block defects. Examination of the evolution of the cantilever films for many growths, both partial and complete, indicates that producing a film without these defects requires careful control of growth conditions and crystal morphology at multiple steps. Their elimination enhances optical emission and uniformity over large (mm) size areas.
Date: August 1, 2003
Creator: Mitchell, Christine Charlotte
Partner: UNT Libraries Government Documents Department

Deformation Microstructures and Creep Mechanisms in Advanced ZR-Based Cladding Under Biazal Loading

Description: Investigate creep behavior of Zr-based cladding tubes with attention to basic creep mechanisms and transitions in them at low stresses and/or temperatures and study the dislocation microstructures of deformed samples for correlation with the underlying micromechanism of creep
Date: August 11, 2008
Creator: Murty, K. Linga (KL)
Partner: UNT Libraries Government Documents Department

ParaDiS on Blue Gene/L: stepping up to the challenge

Description: This paper reports on the efforts to enable fully scalable simulations of Dislocation Line Dynamics (DLD) for direct calculations of strength of crystalline materials. DLD simulations are challenging and do not lend themselves naturally to parallel computing. Through a combinations of novel physical approaches, mathematical algorithms and computational science developments, a new DLD code ParaDiS is shown to take meaningful advantage of BG/L and, by doing so, to enable discovery class science by computation.
Date: June 9, 2006
Creator: Hommes, G; Arsenlis, A; Bulatov, V; Cai, W; Cook, R; Hiratani, M et al.
Partner: UNT Libraries Government Documents Department

The correlation of indentation size effect experiments with pyramidal and spherical indenters.

Description: Experiments were conducted in annealed iridium using pyramidal and spherical indenters over a wide range of load. For a Berkovich pyramidal indenter, the hardness increased with decreasing depth of penetration. However, for spherical indenters, hardness increased with decreasing sphere radius. Based on the number of geometrically necessary dislocations generated during indentation, a theory that takes into account the work hardening differences between pyramidal and spherical indenters is developed to correlate the indentation size effects measured with the two indenters. The experimental results verify the theoretical correlation.
Date: January 1, 2001
Creator: Swadener, J. G. (John G.); George, Easo P. & Pharr, G.M.
Partner: UNT Libraries Government Documents Department

Atom-to-continuum methods for gaining a fundamental understanding of fracture.

Description: This report describes an Engineering Sciences Research Foundation (ESRF) project to characterize and understand fracture processes via molecular dynamics modeling and atom-to-continuum methods. Under this aegis we developed new theory and a number of novel techniques to describe the fracture process at the atomic scale. These developments ranged from a material-frame connection between molecular dynamics and continuum mechanics to an atomic level J integral. Each of the developments build upon each other and culminated in a cohesive zone model derived from atomic information and verified at the continuum scale. This report describes an Engineering Sciences Research Foundation (ESRF) project to characterize and understand fracture processes via molecular dynamics modeling and atom-to-continuum methods. The effort is predicated on the idea that processes and information at the atomic level are missing in engineering scale simulations of fracture, and, moreover, are necessary for these simulations to be predictive. In this project we developed considerable new theory and a number of novel techniques in order to describe the fracture process at the atomic scale. Chapter 2 gives a detailed account of the material-frame connection between molecular dynamics and continuum mechanics we constructed in order to best use atomic information from solid systems. With this framework, in Chapter 3, we were able to make a direct and elegant extension of the classical J down to simulations on the scale of nanometers with a discrete atomic lattice. The technique was applied to cracks and dislocations with equal success and displayed high fidelity with expectations from continuum theory. Then, as a prelude to extension of the atomic J to finite temperatures, we explored the quasi-harmonic models as efficient and accurate surrogates of atomic lattices undergoing thermo-elastic processes (Chapter 4). With this in hand, in Chapter 5 we provide evidence that, by using the appropriate energy potential, the ...
Date: August 1, 2011
Creator: McDowell, David Lynn (Georgia Institute of Technology, Atlanta, GA); Reedy, Earl David, Jr.; Templeton, Jeremy Alan; Jones, Reese E.; Moody, Neville Reid; Zimmerman, Jonathan A. et al.
Partner: UNT Libraries Government Documents Department

Study of dislocations in copper by weak beam, stereo, and in situ straining TEM

Description: Conventional transmission electron microscopy (TEM) has been an invaluable tool for verifjhg and developing dislocation theories since the first direct observations of dislocations were made using a TEM in the 1950s. Several useful techniques and technological advancements have been made since, helping fbrther the advancement of dislocation knowledge. The present paper concerns two studies of dislocations in copper made by coupling several of these techniques, specifically weak beam, in situ straining, and stereo TEM. Stereo-TEM coupled with in situ straining TEM was used for tracking 3D dislocation motion and interactions in low dislocation density copper foils. A mechanism by which dislocations in a pileup bypass a dislocation node is observed and discussed. Weak beam TEM is used in conjunction with stereo-TEM to analyze the dislocation content of a dense dislocation wall (DDW).
Date: January 1, 2002
Creator: McCabe, R. J. (Rodney J.); Misra, A. (Amit) & Mitchell, T. E. (Terence E.)
Partner: UNT Libraries Government Documents Department

Exceptional Friction Mitigation via Subsurface Plastic Shear in Defective Nanocrystalline Ceramics

Description: This article reports that atomic layer deposition {0002}-textured ZnO films, with nanocolumnar grains and defective sub-stoichiometric structure, exhibit nanocrystalline plasticity and exceptionally low sliding friction and wear.
Date: June 13, 2014
Creator: Mohseni, Hamidreza; Mensah, B. A.; Gupta, N.; Srinivasan, S. G. & Scharf, Thomas W.
Partner: UNT College of Education

Effect of Grain Size on the Acoustic Emission Generated During Plastic Deformation of Copper

Description: Acoustic emission signals from polycrystalline Al 1100 samples during plastic deformation were analyzed with respect to the strain rate and grain size. A kinematic model is proposed to account for the observed behavior. An experimental acoustic emission parameter, equivalent to the average energy of the acoustic events, correlates satisfactorily with the computed energy of moving dislocations during the deformation process. Both energies attain a maximum value for a certain grain size and are directly dependent on the strain rate.
Date: May 1, 1980
Creator: Baram, J. & Rosen, M.
Partner: UNT Libraries Government Documents Department