242 Matching Results

Search Results

Advanced search parameters have been applied.

Microhole Wireless Steering While Drilling System

Description: A background to Coiled Tubing Bottom Hole Assemblies (CT-BHA) is given, and the development of a bi-directional communications and power module (BCPM)component is described. The successful operation of this component in both the laboratory and field environment is described. The primary conclusion of this development is that the BCPM component operates as anticipated within the CT-BHA, and significantly extends the possibility of drilling with coiled tubing in the microhole environment.
Date: December 31, 2007
Creator: Macpherson, John & Gregg, Thomas
Partner: UNT Libraries Government Documents Department

Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

Description: Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented.
Date: August 23, 2001
Creator: Durlofsky, Louis J. & Aziz, Khalid
Partner: UNT Libraries Government Documents Department

Productivity and Injectivity of Horizontal Wells

Description: This quarterly report is based on the last activity above. It gives a brief account of the work and the complete study will be included in the next Annual Report of the project.
Date: November 8, 1999
Creator: Arababi, Sepehr; Aziz, Khalid; Hayashida, Yasuyuki & Hewett, Thomas
Partner: UNT Libraries Government Documents Department

Productivity and Injectivity of Horizontal Wells

Description: The generation of suitable simulation grids for heterogeneous media and specific discretization issues that arise. Streamlines and equipotentials are used to define our base grids. Since streamlines are concentrated in high velocity regions they provide a natural means of clustering fine grid cells in crucial flow regions. For complex configurations and particularly for strongly heterogeneous regions the resulting grid cells can become very distorted due to extremely high curvatures. Two types of cell centered formulation are examined together with a cell vertex-point distributed scheme. Important distinctions are found for highly distorted cells. The new grids are tested for accuracy in terms of critical breakthrough parameters and it is shown that a much higher level of grid resolution is required by conventional simulators in order to achieve results that are comparable with those computed on relatively coarse streamline-potential grids.
Date: November 16, 1999
Creator: Aziz, Khalid; Hewett, Thomas A.; Arbabi, Sepehr & Smith, Marilyn
Partner: UNT Libraries Government Documents Department

Productivity and injectivity of horizontal wells. Quarterly report, April 1, 1995--June 30, 1995

Description: The following activities have been carried out in the last three months: Work on developing a three-dimensional Voronoi grid simulator is progressing. Extensive testing of the grid generation and visualization modules of the simulator is continuing while modifications and improvements are being made to these capabilities; The recently developed semi-analytical method for calculating critical cresting rates is being extended for the case of simultaneous gas and water coning toward a horizontal well; The accuracy of available correlations and analytical models for breakthrough times of horizontal wells is being investigated through simulations of a field case; Work on developing methods for coupling between reservoir and the werbore through a network modeling approach is progressing. The current stage of the study involves evaluation of available analytical methods; The necessary modifications have been made to the rig at the Marathon facility and the high rate two-phase flow experiments are about to commence; new correlations for wall friction and interfacial friction factors have been developed for the stratified flow in horizontal and inclined pipes. After further testing this new approach will be used in our mechanistic model; and this quarterly report has been entirely devoted to the task fisted in the last item above and we only present an abridged version of the Masters report of Mr. Liang-Biao Ouyang on which it is based. The complete study will be included in the next Annual Report of the Project.
Date: August 1, 1995
Creator: Aziz, K. & Hewett, T.A.
Partner: UNT Libraries Government Documents Department

USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

Description: One of the principal objectives of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, microbial samples were collected from the Springdale prospect area in Manistee County, Michigan. The samples were taken along the trace of the proposed horizontal wells. The samples are presently being analyzed and the results will be reported in the next quarterly report. The main news this reporting period is that the Springdale prospect area in Manistee County, Michigan, continues to see drilling activity. Our industry partner, Jordan Development Company, LLC, is permitting additional horizontal wells following their success in the prospect area.
Date: December 31, 2004
Creator: Wood, James R.; Wylie, A. & Quinlan, W.
Partner: UNT Libraries Government Documents Department

USING RECENT ADVANCES IN 2ND SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

Description: Three horizontal wells have been completed (St. Springdale & Trezil 9-15 HD, St. Springdale 13-14 HD, St. Springdale & Stedronsky 10-15 HD) and three more wells were spudded (St. Springdale & CSX 2-22 HD, St. Springdale & Mann 9-21 HD and St. Springdale 7-22 HD) in the Springdale play this past reporting period. All are horizontal wells in the Brown Niagaran. This brings the total wells in the play to 12 with seven wells contributing to a total daily production exceeding 350 bbls/day. Data from these wells has been converted from drillers logs (footage calls) and converted to Michigan GeoRef coordinates and plotted. The Gamma Ray data along the well bore was available since it was used to steer the tool during drilling and this data was superimposed on the well trajectories in an effort to help distinguish pay zones from unproductive rock. One new geochemical survey was conducted over the projected surface path of the State Springdale & Stedronsky 14-15 HD and a final project survey was planned over one of the unsurveyed wells. This will bring the total surveyed wells to five and should provide enough data to determine if the idea of only sampling along the well bore is a sound strategy.
Date: June 30, 2005
Creator: Wood, James R.; Wylie, A. & Quinlan, W.
Partner: UNT Libraries Government Documents Department

IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

Description: Progress on the East Binger Unit (EBU) project has slowed as difficulties have been encountered with obtaining satisfactory production from well EBU 37G-3H, the new horizontal well. Remedial operations have been conducted and stimulation operations were about to get under way at the end of the reporting period. International Reservoir Technologies, Inc. has made additional progress on the pilot area simulation model, reaching a point with the history match that we are awaiting more definitive production data from the horizontal well. Planning future development of the EBU hinges on evaluating the results of well EBU 37G-3H. Performance of this well must be understood in order to evaluate development scenarios involving horizontal wells and compare them with development scenarios involving vertical wells.
Date: October 26, 2001
Creator: Sinner, Joe
Partner: UNT Libraries Government Documents Department

Economic recovery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Quarterly report, October 1--December 31, 1996

Description: This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically- fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well. The Unites States Department of Energy granted approval of the continuation application to implement Budget Period Two effective November 21, 1996. The only Budget Period One activities for the quarter involved project administration. Budget Period Two activities were initiated with the development of a drilling program for the high-angle slant well. The well was spud on December 4, 1996 and was drilling at 10,830 ft in the vertical section of the hole as of the end of the month.
Date: February 13, 1997
Creator: Laue, M.L.
Partner: UNT Libraries Government Documents Department

Economic reocvery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Quarterly report, July 1 - September 30, 1996

Description: This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbitide complex through the use of hydraulically- fractured, horizontal, or high-angle wells. The combination of horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined by fracturing an existing test well. Fracture azimuth will be predicted, in part, by passive seismic monitoring from an offset well during fracture stimulation of the test well. The fine-grid reservoir simulation of the northeast fan-margin region of the Yowlumne field was completed during third quarter 1996. A variety of development alternatives were investigated aimed at optimizing project economics. Model forecasts, compared slant well performance to more conventional development options and quantified rate impacts due to changes in well location, orientation, and completion technique. Project economics were then updated with the production forecasts from the simulation model.
Date: October 1, 1996
Creator: Niemeyer, B.L.
Partner: UNT Libraries Government Documents Department

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Quarterly report, October 1 - December 31, 1996

Description: The principal objective of this project is to demonstrate the feasibility and economic success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. A site for a horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was successful. It has produced over 37,000 bbls of oil as of December 31, 1996 at sustained rate of {approximately}100 bbls/day. At a nominal wellhead price of $20/bbl, this well has made about $750,000 and is still going strong. Two additional horizontal wells have just been completed and are on test. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels. Horizontal drilling will likely revolutionize the development of old carbonate fields such as those in the Dundee of Michigan.
Date: January 1, 1997
Creator: Wood, J.R.
Partner: UNT Libraries Government Documents Department

Integrated approach towards the application of horizontal wells to improve waterflooding performance. Annual report

Description: This annual report describes the progress during the second year of the project on Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance. This project is funded under the Department of Energy`s Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvial-dominated deltaic deposits. The project involves an integrated approach to characterize the reservoir followed by the drilling of horizontal injection wells to improve production performance. The type of data we have integrated include cross bore hole seismic surveys, geological interpretation based on logs and cores, and engineering information. This report covers the second phase of the project which includes a detailed reservoir description of the field by integrating all the available information, followed by flow simulation of the Self Unit under various operating conditions. Based on an examination of the various operating parameters, we observed that the best possible solution to improve the Self Unit performance is to recomplete and stimulate most of the wells followed by an increase in the water injection rate. Drilling of horizontal injection well, although helpful in improving the performance, was not found to be economically feasible. The proposed reservoir management plan will be implemented shortly.
Date: May 1, 1995
Creator: Kelkar, M.; Liner, C. & Kerr, D.
Partner: UNT Libraries Government Documents Department

Productivity and injectivity of horizontal wells

Description: One of the key issues addressed was pressure drop in long horizontal wells and its influence on well performance. Very little information is available in the literature on flow in pipes with influx through pipe walls. Virtually all of this work has been in small diameter pipes and with single-phase flow. In order to address this problem new experimental data on flow in horizontal and near horizontal wells have been obtained. Experiments were conducted at an industrial facility on typical 6 1/8 ID, 100 feet long horizontal well model. The new data along with available information in the literature have been used to develop new correlations and mechanistic models. Thus it is now possible to predict, within reasonable accuracy, the effect of influx through the well on pressure drop in the well.
Date: March 6, 2000
Creator: Aziz, Khalid
Partner: UNT Libraries Government Documents Department

Recovery of bypassed oil in the Dundee Formation (Devonian) of the Michigan Basin using horizontal drains. Final report, April 28, 1994--December 31, 1997

Description: Total hydrocarbon production in the Michigan Basin has surpassed 1 billion barrels (Bbbls) and total unrecovered reserves are estimated at 1--2 BBbls. However, hydrocarbon production in Michigan has fallen from 35 MMbbls/yr in 1979 to about 10 MMbbls/yr in 1996. In an effort to slow this decline, a field demonstration project designed around using a horizontal well to recover bypassed oil was designed and carried out at Crystal Field in Montcalm County, MI. The project had two goals: to test the viability of using horizontal wells to recover bypassed oil from the Dundee Formation, and to characterize additional Dundee reservoirs (29) that are look alikes to the Crystal Field. As much as 85 percent of the oil known to exist in the Dundee Formation in the Michigan Basin remains in the ground as bypassed oil. Early production techniques in the 137 fields were poor, and the Dundee was at risk of being abandoned, leaving millions of barrels of oil behind. Crystal Field in Montcalm County, Michigan is a good example of a worn out field. Crystal Field was once a prolific producer which had been reduced to a handful of wells, the best of which produced only 5 barrels per day. The demonstration well drilled as a result of this project, however, has brought new life to the Crystal Field. Horizontal drilling is one of the most promising technologies available for oil production. The new well was completed successfully in October of 1995 and has been producing 100 barrels of oil per day, 20 times better than the best conventional well in the field.
Date: September 1, 1998
Creator: Wood, J.R. & Pennington, W.D.
Partner: UNT Libraries Government Documents Department

Economic recovery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Quarterly report, October 1--December 31, 1997

Description: This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation is used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments are determined, in part, by fracturing an existing test well. Fracture azimuth is predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well. The long radius, near horizontal well has been drilled. Swept-out sand intervals and a poor cement bond behind the 5 in. liner precluded two of the three originally planned hydraulic fracture treatments. All pay intervals behind the 5 in. liner were therefore perforated and stimulated with a non-acid reactive fluid. Following a short production period, the remaining pay intervals in the well, behind the 7 in. liner, were then perforated. The well was returned to production to observe production trends and pressure behavior prior to stimulation of the newer perforations.
Date: February 5, 1998
Creator: Laue, M.L.
Partner: UNT Libraries Government Documents Department

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Annual report, March 1996--March 1997

Description: This Class II field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two long horizontal wells were drilled successfully in Crystal after the TOW 1-3, but were disappointing economically. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels.
Date: April 1, 1998
Partner: UNT Libraries Government Documents Department

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Annual report, May 1, 1995--April 30, 1996

Description: The principal objective of this project is to demonstrate the feasibility and economics success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The project is a cooperative venture between Michigan Technological University (MTU), Western Michigan University (WMU), and Terra Energy (now Cronus Development Co.). During the fall of 1995, the demonstration well for this project, the TOW No. 1-3 well in Crystal Field, Montcalm County, Michigan, was completed in the Dundee Formation and for the first three months of operation produced 50 bbl/day oil with no water cut. Because surface facilities were inadequate to handle full production, the well was produced for 12 hrs/day and shut in for 12 hrs/day. In January, 1996, new surface Facilities were completed and production was raised to 100 bbl/day. Daily production has varied from about 75 to 100 BOPD since that time. To date, the well has produced over 10, 000 bbls. The water cut remains at 0% and pressure has been maintained at 1445 psi by an active water drive. If expectations are met, the well will pay out in less than 1 year and continue on production for at least 5 years. Cronus Development Co. is tentatively planning to drill three more horizontal wells in the Dundee in Crystal Field. Thus, the play concept we chose to test, that bypassed attic oil remained in the Dundee reservoir between wells that had been produced at excessively high flow rates and had coned water during primary production, appears to be correct, and the TOW No. 1-3 HD-1 well is now a scientific, and appears soon to become an economic, success.
Date: April 30, 1996
Creator: Wood, J.R.
Partner: UNT Libraries Government Documents Department

Method for cutting steam heat losses during cyclic steam injection of wells. Fourth quarterly report

Description: Effective Gravel-packing of horizontal wells is difficult to achieve, using conventional pre-slotted liners, yet it is generally required in the soft Heavy Oil reservoir rocks of California, where cyclic steam injection has been proven to be the most cost-effective oil recovery method. The proposed method of gravel placement behind a non-perforated liner, which is later perforated {open_quotes}in situ{close_quotes} with a new tool operated by coiled-tubing, is expected to greatly reduce costs resulting from sand production in horizontal wells operated under cyclic steam injection. The detailed configuration of the prototype tool is described. It includes two pairs of cutting wheels at the ends of spring-loaded pivoting arms, which are periodically pressed through the liner wall and shortly thereafter retracted, while the coiled tubing is being pulled-out. For each operating cycle of the hydraulically-operated tool, this results in a set of four narrow slots parallel to the liner axis, in two perpendicular diametral planes. The shape of the edges of each slot facilitates bridging by the gravel particles, for a more effective and compacted gravel-packing. The tool includes a few easily-assembled parts machined from surface-hardened alloy steel presenting great toughness, selected from those used in die making. The operation of the system and potential future improvements are outlined. The method of fabrication, detailed drawings and specifications are given. They will serve as a basis for negotiating subcontracts with qualified machine shops.
Date: February 1, 1995
Partner: UNT Libraries Government Documents Department

Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. [Quarterly report], October 1, 1995--December 31, 1995

Description: The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. This is the third quarterly technical progress report for the project. Through December 1995, the project is on schedule and on budget. Several significant technical achievements have already been successfully accomplished including the drilling of four horizontal wells (two producers and two steam injectors) utilizing a new and lower cost drilling program, the drilling of five observation wells to monitor the horizontal steamflood pilot, the installation of a subsurface harbor channel crossing for delivering steam to an island location, and a geochemical study of the scale minerals being created in the wellbore. Steam injection into the two horizontal injection wells began in mid-December 1995 utilizing the new 2400 ft steam line under the Cerritos Channel. Work on the basic reservoir engineering is expected to be completed in March 1996. A working deterministic geologic model was completed which allowed work to commence on the stochastic geologic and reservoir simulation models.
Date: January 31, 1996
Creator: Hara, S.
Partner: UNT Libraries Government Documents Department

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

Description: This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore.
Date: November 1, 1999
Creator: Laue, M.L.
Partner: UNT Libraries Government Documents Department

IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

Description: Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project continues. Major development work planned for the project includes the drilling of three horizontal production and one vertical injection wells, the conversion of five wells from production to injection service, and the expansion of injection capacity at the nitrogen management facility. Other work items include initiation of project monitoring and continued reservoir simulation. EBU 74G-2, the injection well planned to support the production of EBU 64-3H, has been drilled. Completion was underway at the time of this report. EBU 64-3H was fracture-stimulated during the period, further increasing production from this new horizontal well. Drilling of the final two wells of the pilot project is planned for 2003. Both are planned as horizontal producing wells. Work also began on projects aimed at increasing injection in the pilot area. The project to add compression and increase injection capacity at the nitrogen management facility was initiated, with completion targeted for March 2003. Additional producer-to-injector conversions are expected to be implemented around the same time. The revised history match of the simulation model has been completed, and work has begun to evaluate options with forecast simulations. The quality of the history match is significantly improved over the prior match. The predicted distribution of remaining reserves in the field is significantly changed. Decisions on projects planned for implementation later in Budget Period 2 will be guided by new forecasts.
Date: January 31, 2003
Creator: Sinner, Joe
Partner: UNT Libraries Government Documents Department

Feasibility of Optimizing Recovery & Reserves from a Mature & Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling & Completion of a Trilateral Horizontal Well

Description: The main objective of this project is to devise an effective redevelopment strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field's low productivity. To improve productivity and enhance recoverable reserves, the following specific goals are proposed: (1) Develop an integrated database of all existing data from work done by the former ownership group. (2) Expand reservoir drainage and reduce sand problems through horizontal well drilling and completion. (3) Operate and validate reservoirs' conceptual model by incorporating new data from the proposed trilateral well. (4) Transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs.
Date: November 9, 1999
Creator: Coombs, Steven F.
Partner: UNT Libraries Government Documents Department