289 Matching Results

Search Results

Advanced search parameters have been applied.

Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Description: A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: December 2006
Creator: Dhoopati, Swathi
Partner: UNT Libraries

Optical Time-Domain Reflectometer Performance and Calibration Studies

Description: from Introduction: The measurement accuracy of the optical time-domain reflectometer (OTDR) is restricted in some applications by a limited operational dynamic range and by a lack of standardized test procedures. In an effort to better understand these restrictions, we have measured the range of linearity of some avalanche photodiodes used as backscatter detectors. Also, the effect of input launch conditions is examined and a possible standardized OTDR test procedure is proposed. Using these suggestions, we have made comparisons between attenuation values determined by cutback and backscatter methods and found that good agreement is possible. Finally, some methods are described for checking the response. linearity of OTDR systems.
Date: June 1983
Creator: Danielson, B. L.
Partner: UNT Libraries Government Documents Department

Corrosion of SA1388-1 diodes

Description: After 5 y storage at Allied Signal, a subassembly with SA1388-1 diodes failed testing and the cause was an unacceptable current leak rate in one of the diodes. This was traced to a CuS deposit in a single production lot of diodes; however only about 0.3% failed the specification. A study was performed to determine the cause and potential long-term significance of this problem. Probable cause was determined to be the P-bearing braze material not being compatible with the Ag immersion plating solution (cyanide-based) and to the storage environment containing sulfur.
Date: June 1, 1996
Creator: Krska, C.; Stimetz, C.; Braithwaite, J.; Sorensen, R. & Hlava, P.
Partner: UNT Libraries Government Documents Department

Improved InGaN epitaxy yield by precise temperature measurement :yearly report 1.

Description: This Report summarizes the first year progress (October 1, 2004 to September 30, 2005) made under a NETL funded project entitled ''Improved InGaN Epitaxy Yield by Precise Temperature Measurement''. This Project addresses the production of efficient green LEDs, which are currently the least efficient of the primary colors. The Project Goals are to advance IR and UV-violet pyrometry to include real time corrections for surface emissivity on multiwafer MOCVD reactors. Increasing wafer yield would dramatically reduce high brightness LED costs and accelerate the commercial manufacture of inexpensive white light LEDs with very high color quality. This work draws upon and extends our previous research (funded by DOE) that developed emissivity correcting pyrometers (ECP) based on the high-temperature GaN opacity near 400 nm (the ultraviolet-violet range, or UVV), and the sapphire opacity in the mid-IR (MIR) near 7.5 microns.
Date: August 1, 2006
Creator: Koleske, Daniel David; Creighton, James Randall; Russell, Michael J. & Fischer, Arthur Joseph
Partner: UNT Libraries Government Documents Department

A STUDY OF RAPID CAVITY TUNING.

Description: An FFAG moot likely requires rapid cavity tuning. The cavity must also have a very high gradient. To satisfy both the high power and rapid tuning requirements is a big challenge. Detailed investigation of the possibility is addressed. Included are general thoughts, dual-loop and simple loop analyses, and a study of using ferrite or PIN diodes. Also proposed is a phase control scheme, which may be a better solution if the needed components can be developed. Finally, an energy analysis reveals the difficult of high power tuning.
Date: July 12, 2001
Creator: ZHAO, Y.
Partner: UNT Libraries Government Documents Department

Nanofabricated SiO{sub 2}-Si-SiO{sub 2} Resonant Tunneling Diodes

Description: Resonance Tunneling Diodes (RTDs) are devices that can demonstrate very high-speed operation. Typically they have been fabricated using epitaxial techniques and materials not consistent with standard commercial integrated circuits. The authors report here the first demonstration of SiO{sub 2}-Si-SiO{sub 2} RTDs. These new structures were fabricated using novel combinations of silicon integrated circuit processes.
Date: April 6, 2000
Creator: FLEMING,JAMES G.; CHOW,KAI-CHEUNG & LIN,SHAWN-YU
Partner: UNT Libraries Government Documents Department

Device Engineering for Enhanced Efficiency from Platinum(II) Phosphorescent OLEDs

Description: Phosphorescent organic light emitting diodes (PHOLEDs) based on efficient electrophosphorescent dopant, platinum(II)-pyridyltriazolate complex, bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (Pt(ptp)2) have been studied and improved with respect to power efficiency, external efficiency, chromacity and efficiency roll-off. By studying the electrical and optical behavior of the doped devices and functionality of the various constituent layers, devices with a maximum EQE of 20.8±0.2 % and power efficiency of 45.1±0.9 lm/W (77lm/W with luminaries) have been engineered. This improvement compares to devices whose emission initially could only be detected by a photomultiplier tube in a darkened environment. These devices consisted of a 65 % bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (Pt(ptp)2) doped into 4,4'-bis(carbazol-9-yl)triphenylamine (CBP) an EML layer, a hole transporting layer/electron blocker of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC), an electron transport layer of 1,3,5-tris(phenyl-2-benzimidazolyl)-benzene (TPBI), and a LiF/Al cathode. These devices show the acceptable range for warm white light quadrants and qualify to be called "warm white" even w/o adding another emissive layer. Dual EML devices composed of neat Pt(ptp)2 films emitting orange and CBP: Pt(ptp)2 film emitting blue-green produced a color rendering index (CRI) of 59 and color coordinates (CIE) of (0.47,0.49) at 1000Cd/m² with power efficiency of 12.6±0.2 lm/W and EQE of 10.8±0.2 %. Devices with two blue fluorescent emission layers as singlet filters and one broad yellow emission layer from CBP: Pt(ptp)2 displayed a CRI of 78 and CIE of (0.28,0.31) at 100Cd/m² with maximum power efficiency of 6.7±0.3 lm/W and EQE of 5.7±0.2 %.
Date: August 2010
Creator: Li, Minghang
Partner: UNT Libraries

Sunlight readability and luminance characteristics of light-emitting diode push button switches.

Description: Lighted push button switches and indicators serve many purposes in cockpits, shipboard applications and military ground vehicles. The quality of lighting produced by switches is vital to operators' understanding of the information displayed. Utilizing LED technology in lighted switches has challenges that can adversely affect lighting quality. Incomplete data exists to educate consumers about potential differences in LED switch performance between different manufacturers. LED switches from four different manufacturers were tested for six attributes of lighting quality: average luminance and power consumption at full voltage, sunlight readable contrast, luminance contrast under ambient sunlight, legend uniformity, and dual-color uniformity. Three of the four manufacturers have not developed LED push button switches that meet lighting quality standards established with incandescent technology.
Date: May 2004
Creator: Fitch, Robert J.
Partner: UNT Libraries

Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs

Description: Transient electroluminescence (EL) was used to measure the onset of emission delay in OLEDs based on transition metal, phosphorescent bis[3,5-bis(2-pyridyl)-1,2,4-triazolato] platinum(ΙΙ) and rare earth, phosphorescent Eu(hfa)3 with 4'-(p-tolyl)-2,2":6',2" terpyridine (ttrpy) doped into 4,4'-bis(carbazol-9-yl) triphenylamine (CBP), from which the carrier mobility was determined. For the Pt(ptp)2 doped CBP films in OLEDs with the structure: ITO/NPB (40nm)/mcp (10nm)/65% Pt(ptp)2:CBP (25nm)/TPBI (30nm)/Mg:Ag (100nm), where NPB=N, N'-bis(1-naphthyl)-N-N'-biphenyl-1, 1'-biphenyl-4, MCP= N, N'-dicarbazolyl-3,5-benzene, TPBI=1,3,5-tris(phenyl-2-benzimidazolyl)-benzene, delayed recombination was observed and based on its dependence on frequency and duty cycle, ascribed to trapping and de-trapping processes at the interface of the emissive layer and electron blocker. The result suggests that the exciton recombination zone is at, or close to the interface between the emissive layer and electron blocker. The lifetime of the thin films of phosphorescent emitter Pt(ptp)2 were studied for comparison with rare earth emitter Eu(hfa)3. The lifetime of 65% Pt(ptp)2:CBP co-film was around 638 nanoseconds at the emission peak of 572nm, and the lifetime of neat Eu(hfa)3 film was obtained around 1 millisecond at 616 nm, which supports the enhanced efficiency obtained from the Pt(ptp)2 devices. The long lifetime and narrow emission of the rare earth dopant Eu(hfa)3 is a fundamental factor limiting device performance. Red organic light emitting diodes (OLEDs) based on the rare earth emitter Eu(hfa)3 with 4'-(p-tolyl)-2,2":6',2" terpyridine (ttrpy) complex have been studied and improved with respect performance. The 4.5% Eu(hfa)3 doped into CBP device produced the best power efficiency of 0.53 lm/W, and current efficiency of 1.09 cd/A. The data suggests that the long lifetime of the f-f transition of the Eu ion is a principal limiting factor irrespective of how efficient the energy transfer from the host to the dopant and the antenna effect are.
Date: August 2010
Creator: Lin, Ming-Te
Partner: UNT Libraries

Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules (Poster)

Description: This paper presents the result of high-temperature durability and thermal cycling testing and analysis for the selected diodes to study the detail of the thermal design and relative long-term reliability of the bypass diodes used to limit the detrimental effects of module hot-spot susceptibility.
Date: May 1, 2013
Creator: Zhang, Z.; Wohlgemuth, J. & Kurtz, S.
Partner: UNT Libraries Government Documents Department

Final LDRD report : design and fabrication of advanced device structures for ultra high efficiency solid state lighting.

Description: The goal of this one year LDRD was to improve the overall efficiency of InGaN LEDs by improving the extraction of light from the semiconductor chip. InGaN LEDs are currently the most promising technology for producing high efficiency blue and green semiconductor light emitters. Improving the efficiency of InGaN LEDs will enable a more rapid adoption of semiconductor based lighting. In this LDRD, we proposed to develop photonic structures to improve light extraction from nitride-based light emitting diodes (LEDs). While many advanced device geometries were considered for this work, we focused on the use of a photonic crystal for improved light extraction. Although resonant cavity LEDs and other advanced structures certainly have the potential to improve light extraction, the photonic crystal approach showed the most promise in the early stages of this short program. The photonic crystal (PX)-LED developed here incorporates a two dimensional photonic crystal, or photonic lattice, into a nitride-based LED. The dimensions of the photonic crystal are selected such that there are very few or no optical modes in the plane of the LED ('lateral' modes). This will reduce or eliminate any radiation in the lateral direction so that the majority of the LED radiation will be in vertical modes that escape the semiconductor, which will improve the light-extraction efficiency. PX-LEDs were fabricated using a range of hole diameters and lattice constants and compared to control LEDs without a photonic crystal. The far field patterns from the PX-LEDs were dramatically modified by the presence of the photonic crystal. An increase in LED brightness of 1.75X was observed for light measured into a 40 degree emission cone with a total increase in power of 1.5X for an unencapsulated LED.
Date: April 1, 2005
Creator: Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Shul, Randy John; Wendt, Joel Robert; Crawford, Mary Hagerott; Allerman, Andrew Alan et al.
Partner: UNT Libraries Government Documents Department

Sliding Mode Pulsed Averaging IC Drivers for High Brightness Light Emitting Diodes

Description: This project developed new Light Emitting Diode (LED) driver ICs associated with specific (uniquely operated) switching power supplies that optimize performance for High Brightness LEDs (HB-LEDs). The drivers utilize a digital control core with a newly developed nonlinear, hysteretic/sliding mode controller with mixed-signal processing. The drivers are flexible enough to allow both traditional microprocessor interface as well as other options such as “on the fly” adjustment of color and brightness. Some other unique features of the newly developed drivers include • AC Power Factor Correction; • High power efficiency; • Substantially fewer external components should be required, leading to substantial reduction of Bill of Materials (BOM). Thus, the LED drivers developed in this research : optimize LED performance by increasing power efficiency and power factor. Perhaps more remarkably, the LED drivers provide this improved performance at substantially reduced costs compared to the present LED power electronic driver circuits. Since one of the barriers to market penetration for HB-LEDs (in particular “white” light LEDs) is cost/lumen, this research makes important contributions in helping the advancement of SSL consumer acceptance and usage.
Date: August 17, 2006
Creator: Dr. Anatoly Shteynberg, PhD
Partner: UNT Libraries Government Documents Department

MOCVD growth of AlGaN UV LEDs

Description: Issues related to the MOCVD growth of AlGaN, specifically the gas-phase parasitic reactions among TMG, TMA, and NH{sub 3}, are studied using an in-situ optical reflectometer. It is observed that the presence of the well-known gas phase adduct (TMA: NH{sub 3}) could seriously hinder the incorporation behavior of TMGa. Relatively low reactor pressures (30--50 Torr) are employed to grow an AlGaN/GaN SCH QW p-n diode structure. The UV emission at 360 nm (FWHM {approximately} 10 nm) represents the first report of LED operation from an indium-free GaN QW diode.
Date: September 1, 1998
Creator: Han, J. & Crawford, M.H.
Partner: UNT Libraries Government Documents Department

Response Time Measurements of the NIF DANTE XRD-31 X-Ray Diodes (Pre-print)

Description: The XRD-31 is a fast, windowless X-ray vacuum photodiode developed by EG&G. It is currently the primary fast X-ray detector used to diagnose the X-rays on NIF and OMEGA on the multichannel DANTE spectrometer. The XRD-31 has a dynamic range of less than 1e-12 amps to more than 10 amps. A technique is described to measure the impulse response of the diodes to a 150 fs pulse of 200 nm laser light and a method to calculate the “risetime” for a square pulse and compare it with the computed electron transit time from the photocathode to the anode. Measured response time for 5 XRD-31s assembled in early 2004 was 149.7 ps +-2.75 ps.
Date: January 23, 2009
Creator: Griffin, Don Pellinen and Michael
Partner: UNT Libraries Government Documents Department

Beam position monitor

Description: An apparatus for determining the position of an x-ray beam relative to a desired beam axis where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.
Date: September 21, 2000
Creator: Alkire, Randy W.; Rosenbaum, Gerold & Evans, Gwyndaf
Partner: UNT Libraries Government Documents Department

PIN diode array x-ray imaging. Final Technical report

Description: We have completed constructing an x-ray camera based on a solid state imaging device and have obtained images of Omega laser targets. A Si PIN diode array is used. Objective of this project is to investigate the use of a PIN diode array readout device for obtaining images of 1-20 keV x-ray emission from laser targets. The PIN array detector was successfully used for obtaining hard x-ray images in the high powered laser environment and real time images of the x-ray emission from laser targets.
Date: September 1, 1996
Creator: Jernigan, J.G.
Partner: UNT Libraries Government Documents Department

LEDS-An overview of the state of the art in technology and application

Description: Solid state lighting in the form of Light Emitting Diodes (LEDs) is bringing new sources with different operating characteristics to the market. With the control in dimension, optics, intensity and color, these sources have the potential to transform the way we use light. This paper will review the recent improvements in performance that have been achieved by these devices, focusing on those product attributes identified as being critical to end users. The paper will conclude with a consideration of applications capitalizing on the LEDs' unique operating and physical properties.
Date: March 1, 2002
Creator: Johnson, Stephen
Partner: UNT Libraries Government Documents Department

High voltage feedthrough bushing

Description: A feedthrough bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.
Date: December 31, 1991
Creator: Brucker, J.P.
Partner: UNT Libraries Government Documents Department