530 Matching Results

Search Results

Advanced search parameters have been applied.

Coupling Through Tortuous Path Narrow Slot Apertures into Complex Cavitivies

Description: A hybrid FEM/MoM model has been implemented to compute the coupling of fields into a cavity through narrow slot apertures having depth. The model utilizes the slot model of Warne and Chen [23]-[29] which takes into account the depth of the slot, wall losses, and inhomogeneous dielectrics in the slot region. The cavity interior is modeled with the mixed-order, covariant-projection hexahedral elements of Crowley [32]. Results are given showing the accuracy and generality of the method for modeling geometrically complex slot-cavity combinations.
Date: July 26, 1999
Creator: Jedlicka, Russell P.; Castillo, Steven P. & Warne, Larry K.
Partner: UNT Libraries Government Documents Department

Industrial Applications Perspective of Nanodielectrics

Description: The field of nanodielectrics has had a significant impact on voltage endurance characteristics of electrical insulation. Improved time-to-breakdown behavior, resulting in reduced aging of insulation, and enhanced thermal stability are of considerable importance in industrial applications. This chapter discusses several specific aspects of nanodielectrics and their role in the future of electrical insulation and dielectric sciences.
Date: January 1, 2009
Creator: Tuncer, Enis & Sauers, Isidor
Partner: UNT Libraries Government Documents Department

Low-Frequency Electromagnetic Backscattering from Tunnels

Description: Low-frequency electromagnetic scattering from one or more tunnels in a lossy dielectric half-space is considered. The tunnel radii are assumed small compared to the wavelength of the electromagnetic field in the surrounding medium; a tunnel can thus be modeled as a thin scatterer, described by an equivalent impedance per unit length. We examine the normalized backscattering width for cases in which the air-ground interface is either smooth or rough.
Date: January 16, 2007
Creator: Casey, K & Pao, H
Partner: UNT Libraries Government Documents Department

Femtosecond laser materials processing

Description: Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area. Applications ranging from drilling teeth to cutting explosives to precision cuts in composites are possible by using this technology. For material removal at reasonable rates, we have developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.
Date: August 5, 1998
Creator: Stuart, B
Partner: UNT Libraries Government Documents Department

Electrostriction in Field-Structured Composites: Basis for a Fast Artificial Muscle?

Description: The electrostriction of composites consisting of dielectric particles embedded in a gel or elastomer is discussed. It is shown that when these particles are organized by a uniaxial field before gelation, the resulting field-structured composites are expected to exhibit enhanced electrostriction in a uniform field applied along the same axis as the structuring field. The associated stresses might be large enough to form the basis of a polymer-based fast artificial muscle.
Date: January 27, 1999
Creator: Anderson, R.A. & Martin, J.E.
Partner: UNT Libraries Government Documents Department

Epoxy Foam Encapsulants: Processing and Dielectric Characterization

Description: The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.
Date: January 1, 1999
Creator: Domeier, Linda & Hunter, Marion
Partner: UNT Libraries Government Documents Department

Intricate Mechanisms-on-a Chip Enabled by 5-Level Surface Micromachining

Description: Surface micromachining generally offers more design freedom than related technologies, and it is the technology of choice for most microelectromechanical applications that require multi-level structures. However, the design flexibility that surface micromachining offers is not without limitations. In addition to determining how to fabricate devices in a planar world, the designer also needs to consider issues such as film quality, thickness, residual stress, topography propagation, stringers, processing limitations, and concerns about surface adhesion [1]. Only a few years ago, these were the types of issues that limited design complexity. As the technology improved, the number of mechanical layers available to the designer became the dominant constraint on system functionality. In response, we developed a 5-level polysilicon fabrication technology [2] that offers an unprecedented level of microelectromechanical complexity with simultaneous increases in system yield and robustness. This paper outlines the application that was the driving force behind this work and describes the first devices specifically designed for and fabricated in this technology. The 5-level fabrication technology developed to support this program is known as SUMMiT-V. Four mechanical layers of polysilicon referred to as polyl, poly2, poly3, and poly4 are fabricated above a polyO electrical interconnect and ground plane layer [2,4]. PolyO is 0.3 pm thick, polyl is 1.0 pm, poly 2 is 1.5 pm, and both poly3 and poly4 are 2.25 pm. All films except polyl and poly2 are separated by 2-pm thick depositions of sacrificial oxide. A 0.5-m sacrificial oxide between polyl and poly2 typically defines the clearance between close mating parts such as hubs and hinges. This entire stack is built on a single crystal substrate with a dielectric foundation of 0.8 pm of nitride over 0.63 m of oxide. Seventeen drawing layer are combined to generate the 14 photolithographic masks used to pattern these films during a 240-step ...
Date: March 30, 1999
Creator: Allen, J.J.; McWhorter, P.J.; Miller, S.L.; Rodgers, M.S.; Smith, J.H. & Sniegowski, J.J.
Partner: UNT Libraries Government Documents Department

Functional Materials for Microsystems: Smart Self-Assembled Photochromic Films: Final Report

Description: This project set out to scientifically-tailor ''smart'' interfacial films and 3-D composite nanostructures to exhibit photochromic responses to specific, highly-localized chemical and/or mechanical stimuli, and to integrate them into optical microsystems. The project involved the design of functionalized chromophoric self-assembled materials that possessed intense and environmentally-sensitive optical properties (absorbance, fluorescence) enabling their use as detectors of specific stimuli and transducers when interfaced with optical probes. The conjugated polymer polydiacetylene (PDA) proved to be the most promising material in many respects, although it had some drawbacks concerning reversibility. Throughout his work we used multi-task scanning probes (AFM, NSOM), offering simultaneous optical and interfacial force capabilities, to actuate and characterize the PDA with localized and specific interactions for detailed characterization of physical mechanisms and parameters. In addition to forming high quality mono-, bi-, and tri-layers of PDA via Langmuir-Blodgett deposition, we were successful in using the diacetylene monomer precursor as a surfactant that directed the self-assembly of an ordered, mesostructured inorganic host matrix. Remarkably, the diacetylene was polymerized in the matrix, thus providing a PDA-silica composite. The inorganic matrix serves as a perm-selective barrier to chemical and biological agents and provides structural support for improved material durability in microsystems. Our original goal was to use the composite films as a direct interface with microscale devices as optical elements (e.g., intracavity mirrors, diffraction gratings), taking advantage of the very high sensitivity of device performance to real-time dielectric changes in the films. However, our optical physics colleagues (M. Crawford and S. Kemme) were unsuccessful in these efforts, mainly due to the poor optical quality of the composite films.
Date: November 1, 2001
Partner: UNT Libraries Government Documents Department

Lead zirconate titanate on base metal foils: An approach for embedded high-K passive components

Description: An approach for embedding high-K dielectric thin films into polymer packages has been developed. Pb{sub 0.85}La{sub 0.15}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.96}O{sub 3} thin films were prepared by chemical solution deposition on 50 {micro}m thick Ni-coated Cu foils. Sputter deposited Ni top electrodes completed the all base-metal capacitor stack. After high temperature N{sub 2} crystallization anneals, the PLZT composition showed reduction resistance while the base-metal foils remained flexible. Capacitance density and Loss tangent values range between 300 and 400 nF/cm{sup 2} and 0.01 and 0.02 from 1 to 1,000 kHz respectively. These properties represent a 2 to 3 order of magnitude improvement over available embedded capacitor technologies for polymeric packages.
Date: January 26, 2000
Creator: Maria, J.-P.; Cheek, K.; Streiffer, S. K.; Kim, S.-H.; Dunn, G. & Kingon, A. I.
Partner: UNT Libraries Government Documents Department

Breakdown During High-Field Bias-Temperature Stress

Description: Measurements of dielectric breakdown during high-field electrical stress are typically performed at or near room temperature via constant voltage or current stress methods. In this summary they explore whether useful information might also be obtained by performing current measurements during a temperature ramp at high electric field.
Date: August 5, 1999
Creator: Fleetwood, D.M.; Krisch, K.S. & Sexton, F.W.
Partner: UNT Libraries Government Documents Department

Tunable ionic-conductivity of collapsed Sandia octahedral molecular sieves (SOMS).

Description: This proposal focuses on the synthesis and characterization of ''tunable'' perovskite ceramics with resulting controlled strength and temperature of dielectric constants and/or with ionic conductivity. Traditional methods of synthesis involve high temperature oxide mixing and baking. We developed a new methodology of synthesis involving the (1) low temperature hydrothermal synthesis of metastable porous phases with ''tuned'' stoichiometry, and element types, and then (2) low temperature heat treatment to build exact stoichiometry perovskites, with the desired vacancy concentrations. This flexible pathway can lead to compositions and structures not attainable by conventional methods. During the course of this program, a series of Na-Nb perovskites were synthesized by calcining and collapsing microporous Sandia Octahedral Molecular Sieve (SOMS) phases. These materials were studied by various characterization techniques and conductivity measurements to better delineate stability and stoichiometry/bulk conductivity relationships. The conductivity can be altered by changing the concentration and type of the substituting framework cation(s) or by ion exchange of sodium. To date, the Na{sub 0.9}Mg{sub 0.1}Nb{sub 0.8}Ti{sub 0.2}O{sub 3-{delta}} shows the best conductivity.
Date: November 1, 2006
Creator: Pless, Jason; Nenoff, Tina Maria; Garino, Terry J. & Axness, Marlene
Partner: UNT Libraries Government Documents Department

Femtosecond pulse damage thresholds of dielectric coatings in vacuum

Description: At 10-7 Torr, the multiple femtosecond pulse damage threshold, F(?), is about 10% of the single pulse damage fluence F(1) for hafnia and silica films compared to about 65% and 50%, respectively, at 630 Torr. In contrast, the single-pulse damage threshold is pressure independent. The decrease of F(?) with decreasing air pressure correlates with the water vapor and oxygen content of the ambient gas with the former having the greater effect. The decrease in F(?) is likely associated with an accumulation of defects derived from oxygen deficiency, for example vacancies. From atmospheric air pressure to pressures of {approx}3 x 10{sup -6} Torr, the damage 'crater' starts deterministically at the center of the beam and grows in diameter as the fluence increases. At pressure below 3x10-6 Torr, damage is initiated at random 'sites' within the exposed area in hafnia films, while the damage morphology remains deterministic in silica films. A possible explanation is that absorbing centers are created at predisposed sample sites in hafnia, for example at boundaries between crystallites, or crystalline and amorphous phases.
Date: March 1, 2011
Creator: Michelle D. Shinn, Duy N. Nguyen, Luke A. Emmert ,Paul Schwoebel, Dinesh Patel, Carmen S. Menoni, Wolfgang Rudolph
Partner: UNT Libraries Government Documents Department

Exploring the effect of Al2O3 ALD coating on a high gradient ILC single-cell cavity

Description: Encouraged by work at Argonne National Lab, we investigated atomic layer deposition technique (ALD) for high gradient superconducting RF cavities at JLab with an ALD coating system of Old Dominion University located on the JLab site. The goal of this study was to look into the possibility of coating a dielectric layer on top of RF niobium surface at a lower temperature of 120 C as compared to ANL coatings at 200 C to preserve niobium pentoxide on niobium surface. The initial coatings showed complete, but non-uniform coatings of the surface with several areas exhibiting discoloration, which was probably due to the temperature variation across the cavity surface. The initial coating showed a high RF losses, which were improved after discolored areas on the beam tubes were removed with HF rinse of the beam tubes only. The best result was 2 109 low field Q0 and Eacc = 18 MV/m limited by available power.
Date: July 1, 2012
Creator: Grigory Eremeev, Anne-Marie Valente, Andy Wu, Diefeng Gu
Partner: UNT Libraries Government Documents Department

High Power Co-Axial SRF Coupler

Description: There are over 35 coupler designs for SRF cavities ranging in frequency from 325 to 1500 MHz. Two-thirds of these designs are coaxial couplers using disk or cylindrical ceramics in various combinations and configurations. While it is well known that dielectric losses go down by several orders of magnitude at cryogenic temperatures, it not well known that the thermal conductivity also goes down, and it is the ratio of thermal conductivity to loss tangent (SRF ceramic Quality Factor) and ceramic volume which will determine the heat load of any given design. We describe a novel robust co-axial SRF coupler design which uses compressed window technology. This technology will allow the use of highly thermally conductive materials for cryogenic windows. The mechanical designs will fit into standard-sized ConFlatĀ® flanges for ease of assembly. Two windows will be used in a coaxial line. The distance between the windows is adjusted to cancel their reflections so that the same window can be used in many different applications at various frequencies.
Date: May 1, 2009
Creator: M.L. Neubauer, R.A. Rimmer
Partner: UNT Libraries Government Documents Department

Linear and nonlinear wave propagation in negative refractionmetamaterials

Description: We discuss linear and nonlinear optical wave propagation in a left-handed medium (LHM) or medium of negative refraction (NRM). We use the approach of characterizing the medium response totally by a generalized electric polarization (with a dielectric permittivity {tilde {var_epsilon}}(w, {rvec k})) that can be decomposed into a curl and a non-curl part. The description has a one-to-one correspondence with the usual approach characterizing the LHM response with a dielectric permittivity {var_epsilon}<0 and a magnetic permeability {mu}<0. The latter approach is less physically transparent in the optical frequency region because the usual definition of magnetization loses its physical meaning. Linear wave propagation in LHM or NRM is characterized by negative refraction and negative group velocity that could be clearly manifested by ultra-short pulse propagation in such a medium. Nonlinear optical effects in LHM can be predicted from the same calculations adopted for ordinary media using our general approach.
Date: May 29, 2003
Creator: Agranovich, V.M.; Shen, Y.R.; Baughman, R.H. & Zakhidov, A.A.
Partner: UNT Libraries Government Documents Department

Large-timestep mover for particle simulations of arbitrarilymagnetized species

Description: For self-consistent ion-beam simulations including electron motion, it is desirable to be able to follow electron dynamics accurately without being constrained by the electron cyclotron timescale. To this end, we have developed a particle-advance that interpolates between full particle dynamics and drift motion. By making a proper choice of interpolation parameter, simulation particles experience physically correct parallel dynamics, drift motion, and gyroradius when the timestep is large compared to the cyclotron period, though the effective gyro frequency is artificially low; in the opposite timestep limit, the method approaches a conventional Boris particle push. By combining this scheme with a Poisson solver that includes an interpolated form of the polarization drift in the dielectric response, the movers utility can be extended to higher-density problems where the plasma frequency of the species being advanced exceeds its cyclotron frequency. We describe a series of tests of the mover and its application to simulation of electron clouds in heavy-ion accelerators.
Date: March 26, 2007
Creator: Cohen, R.H.; Friedman, A.; Grote, D.P. & Vay, J-L.
Partner: UNT Libraries Government Documents Department

The fractal nature of vacuum arc cathode spots

Description: Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.
Date: May 27, 2005
Creator: Anders, Andre
Partner: UNT Libraries Government Documents Department