174 Matching Results

Search Results

Advanced search parameters have been applied.

Investigations of Detonators and Electric Detonators

Description: From Introduction: "The conclusions are given in this bulletin, which is published by the Bureau of Mines as one of the series of publications dealing with the testing of explosives and the precautions that should be taken to increase safety and efficiency in the use of explosives in mining operations. The results of the experiments described in this bulletin show that the average percentage of failures of explosives to detonate was increased more than 20 per cent when the lower grades of electric detonators were used in instead of No. 6 electric detonators, and was increased more than 50 percent when these lower grades were used instead of No. 8 electric detonators."
Date: 1913
Creator: Hall, Clarence & Howell, Spencer P.
Partner: UNT Libraries Government Documents Department

Electric Shot-Firing in Mines, Quarries, and Tunnels

Description: From Introduction: "Data collected by the Bureau of Mines indicate the United States a large percentage of the blasting in quarries, shafts, and tunnels, and from 15 to 25 percent of the blasts in mining operations, are set off electrically. The Bureau of Mines is interested in electric shot-firing because of its use in mining, and especially because electric methods, when properly applied, are undoubtedly safer than other methods commonly used."
Date: 1926
Creator: Ilsley, L. C. & Hooker, A. B.
Partner: UNT Libraries Government Documents Department

Critical energy for shock initiation of fuze train explosives

Description: Results of shock initiation experiments conducted for tetryl and A-5 are presented, along with some data on the shock initiation of other explosives. The experiments were conducted using a gun system. An equation which has been useful in correlating these shock data is given. Some applications of the critical energy concept (represented by the above equation), to explosive train designs for NASA space systems are included. The concept's usefulness to DOD ordnance agencies now replacing tetryl in fuze trains with A-5 is also indicated. (auth)
Date: January 1, 1973
Creator: Walker, F.E.; Wasley, R.J.; Green, L.G. & Nidick, E.J. Jr.
Partner: UNT Libraries Government Documents Department

Semiconductor Bridge Cable Test

Description: The semiconductor bridge (SCB) is an electroexplosive device used to initiate detonators. A C cable is commonly used to connect the SCB to a firing set. A series of tests were performed to identify smaller, lighter cables for firing single and multiple SCBs. This report provides a description of these tests and their results. It was demonstrated that lower threshold voltages and faster firing times can be achieved by increasing the wire size, which reduces ohmic losses. The RF 100 appears to be a reasonable substitute for C cable when firing single SCBs. This would reduce the cable volume by 68% and the weight by 67% while increasing the threshold voltage by only 22%. In general, RG 58 outperforms twisted pair when firing multiple SCBs in parallel. The RG 58's superior performance is attributed to its larger conductor size.
Date: January 1, 2002
Creator: KING, TONY L.
Partner: UNT Libraries Government Documents Department

Improvements in hot-wire electroexplosive devices

Description: Several possible design improvements in hot-wire electroexplosive devices were investigated. These were: an arc-resistant header, greater bridgewire-post heat dissipation area, reacting metal bridgewires, and a secondary explosive substitute for primary explosive. Tests using an SE-1 test fixture with four header-bridgewire models showed highly promising results for raising the overall hot-wire ignition safety margins in electrostatic and rf environments without large increases in firing energy. Various electrical characteristics of the four models are given, together with electrical characteristics and function times of the devices loaded with the secondary explosive. (auth)
Date: October 1, 1973
Creator: Joppa, R.M.
Partner: UNT Libraries Government Documents Department

Modeling Initiation in Exploding Bridgewire Detonators

Description: One- and two-dimensional models of initiation in detonators are being developed for the purpose of evaluating the performance of aged and modified detonator designs. The models focus on accurate description of the initiator, whether it be an EBW (exploding bridgewire) that directly initiates a high explosive powder or an EBF (exploding bridgefoil) that sends an inert flyer into a dense HE pellet. The explosion of the initiator is simulated using detailed MHD equations of state as opposed to specific action-based phenomenological descriptions. The HE is modeled using the best available JWL equations of state. Results to date have been promising, however, work is still in progress.
Date: May 18, 2005
Creator: Hrousis, C A
Partner: UNT Libraries Government Documents Department

One Year Term Review as a Participating Guest in the Detonator and Detonation Physics Group

Description: The one year stay was possible after a long administrative process, because of the fact that this was the first participating guest of B division as a foreign national in HEAF (High Explosives Application Facility) with the Detonator/Detonation Physics Group.
Date: February 6, 2006
Creator: Lefrancois, A; Roeske, F; Tran, T & Lee, R S
Partner: UNT Libraries Government Documents Department

SE-1 detonator

Description: This paper provides a configuration description and specifications for the SE-1 detonator. The SE-1 is often referred to as the all purpose detonator due to its popular use as a test unit by the U.S. Department of Defense and ERDA research and development laboratories such as Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory and Sandia Laboratories.
Date: December 31, 1976
Partner: UNT Libraries Government Documents Department

An investigation of corrosion in semiconductor bridge explosive devices.

Description: In the course of a failure investigation, corrosion of the lands was occasionally found in developmental lots of semiconductor bridge (SCB) detonators and igniters. Evidence was found in both detonators and igniters of the gold layer being deposited on top of a corroded aluminum layer, but inspection of additional dies from the same wafer did not reveal any more corroded parts. In some detonators, evidence was found that corrosion of the aluminum layer also happened after the gold was deposited. Moisture and chloride must both be present for aluminum to corrode. A likely source for chloride is the adhesive used to bond the die to the header. Inspection of other SCB devices, both recently manufactured and manufactured about ten years ago, found no evidence for corrosion even in devices that contained SCBs with aluminum lands and no gold. Several manufacturing defects were noted such as stains, gouges in the gold layer due to tooling, and porosity of the gold layer. Results of atmospheric corrosion experiments confirmed that devices with a porous gold layer over the aluminum layer are susceptible to extensive corrosion when both moisture and chlorine are present. The extent of corrosion depends on the level of chlorine contamination, and corrosion did not occur when only moisture was present. Elimination of the gold plating on the lands eliminated corrosion of the lands in these experiments. Some questions remain unanswered, but enough information was gathered to recommend changes to materials and procedures. A second lot of detonators was successfully built using aluminum SCBs, limiting the use of Ablebond{trademark} adhesive, increasing the rigor in controlling exposure to moisture, and adding inspection steps.
Date: May 1, 2007
Creator: Klassen, Sandra Ellen & Sorensen, Neil Robert
Partner: UNT Libraries Government Documents Department

Method development and validation for measuring the particle size distribution of pentaerythritol tetranitrate (PETN) powders.

Description: Currently, the critical particle properties of pentaerythritol tetranitrate (PETN) that influence deflagration-to-detonation time in exploding bridge wire detonators (EBW) are not known in sufficient detail to allow development of a predictive failure model. The specific surface area (SSA) of many PETN powders has been measured using both permeametry and gas absorption methods and has been found to have a critical effect on EBW detonator performance. The permeametry measure of SSA is a function of particle shape, packed bed pore geometry, and particle size distribution (PSD). Yet there is a general lack of agreement in PSD measurements between laboratories, raising concerns regarding collaboration and complicating efforts to understand changes in EBW performance related to powder properties. Benchmarking of data between laboratories that routinely perform detailed PSD characterization of powder samples and the determination of the most appropriate method to measure each PETN powder are necessary to discern correlations between performance and powder properties and to collaborate with partnering laboratories. To this end, a comparison was made of the PSD measured by three laboratories using their own standard procedures for light scattering instruments. Three PETN powder samples with different surface areas and particle morphologies were characterized. Differences in bulk PSD data generated by each laboratory were found to result from variations in sonication of the samples during preparation. The effect of this sonication was found to depend on particle morphology of the PETN samples, being deleterious to some PETN samples and advantageous for others in moderation. Discrepancies in the submicron-sized particle characterization data were related to an instrument-specific artifact particular to one laboratory. The type of carrier fluid used by each laboratory to suspend the PETN particles for the light scattering measurement had no consistent effect on the resulting PSD data. Finally, the SSA of the three powders was measured using both ...
Date: September 1, 2005
Creator: Young, Sharissa Gay
Partner: UNT Libraries Government Documents Department

High-Power Electrostatic Discharges in PETN: Threshold and Scaling Experiments

Description: There is a considerable set of data establishing the safety of PETN-based detonators that are insulted by electrostatic discharge (ESD) from a human body. However, the subject of ESD safety has garnered renewed interest because of the sparse data on high-power, low-impedance discharges that result when the source is a metallic object such as a tool. Experiments on as-built components, using pin-to-cap fault circuits through PETN-based detonators, showed significant evidence of a power dependence but with a very broad energy threshold and some uncertainty in the breakdown path. We have performed a series of experiments using a well-defined arc discharge path and a well-characterized source that is capable of independent variation of energy and power. Studies include threshold variation with power, arc length, powder surface area, and surface vs. bulk discharge paths. We find that an energy threshold variation with power does not appear to exist in the tested range of fractions to tens of MW, and that there are many subtleties to proper energy and power bookkeeping. We also present some test results for PBX 9407.
Date: March 5, 2010
Creator: Liou, W; McCarrick, J F; Hodgin, R L & Phillips, D F
Partner: UNT Libraries Government Documents Department

Proton radiographic and numerical of colliding, diverging PBX-9502 detonations.

Description: The Proton radiographic shot PRAD0077 was designed to study the interaction of colliding, diverging PBX-9502 detonations. The shot consisted of a 50 mm by 50 mm cylinder of PBX-9502 initiated on the top and bottom at the axis by a SE-1 detonator and a 12 mm by 12 mm cylinder of 9407. Seven radiographs were taken at times before and after the detonation collision. The system was modeled using the one-dimensional SIN code with C-J Burn in plane and spherically diverging geometry and using the two-dimensional TDL code with C-J Burn and Forest Fire. The system was also modeled with the recently developed AMR Eulerian reactive hydrodynamic code called NOBEL using Forest Fire. The system results in a large dead or nonreactive zone as the detonation attempts to turn the corner which is described by the model using Forest Fire. The peak detonation pressure achieved by the colliding diverging detonation is 50 gpa and density of 3.125 mg/ml which is about the same as that achieved by one-dimensional spherically diverging 9502 detonations but less than the one-dimensional plane 9502 peak colliding detonation pressure of 65 gpa and density of 3.4 mg/ml. The detonation travels for over 10 mm before it starts to expand and turn the corner leaving more than half of the explosive unreacted. The resulting diverging detonation is more curved than a one-dimensional spherical diverging detonation and has a steeper slope behind the detonation front. This results in the colliding pressure decaying faster than one-dimensional colliding spherical diverging pressures decay. The calculations using Forest Fire reproduce the major features of the radiograph and can be used to infer the colliding detonation characteristics.
Date: January 1, 2002
Creator: Mader, Charles L.; Zumbro, J. D. (John D.) & Ferm, E. N. (Eric N.)
Partner: UNT Libraries Government Documents Department

Reaction Between Thin Gold Wires and Pb-Sn-In Solder (37.5%, 37.5%, 25%), Part A: The Radial Reaction Inside The Solder Mounds, Its Linear Reaction Model, Statistical Variation of Reaction Rate, and Induced Structural Changes In The Solder Mounds.

Description: Thermodynamics favors the reaction between indium and gold, since the heat of formation of AuIn{sub 2} is 6 kcal/mole, substantially larger than the heat of formation of any other possible reaction product. Thermodynamic equilibrium between gold and the elements in the solder mound is reached only when ALL gold is converted to AuIn{sub 2}. There are two aspects to this conversion: (A) the reaction WITHIN the solder mound (called here 'radial reaction') and (B) the reaction OUTSIDE the solder mound (called here 'axial reaction') and the transition from (A) to (B). The reaction between thin gold detonator wires and the In/Pb/Sn solder mound in older detonators has been looked at repeatedly. There are, in addition, two studies which look at the reaction between indium and gold in planar geometry. All data are shown in tables I to V. It is the objective of this section dealing with aspect (A), to combine all of these results into a reaction model and to use this reaction model to reliably and conservatively predict the gold-solder reaction rate of soldered gold bridge-wires as a function of storage temperature and time.
Date: January 19, 2011
Creator: Siekhaus, W J
Partner: UNT Libraries Government Documents Department

Pourability Enhancement of PETN Explosive Powders

Description: Manufacture of precision detonators requires the pelletizing of very fine, organic, crystalline explosive powders. Production of pellets in automatic machines within critical dimensional and weight tolerances requires that the powders pour uniformly into die cavities. The pellets must be able to be initiated with low energy and have a predictable energy output. Modifications to needle-like crystalline PETN explosive powders to make them pourable were introduced by the application of about 80 A thick polymeric coatings to the individual crystals, followed by a controlled agglomeration into a spherical prill. Microencapsulation techniques provided the key to achieving the result using less than 0.5 wt. % coating (an order of magnitude less coating than in usual PBX systems). These coatings did not appreciably alter the energy required to initiate and significantly increased the strength of the pellets. A key point demonstrated, which may be translated to other applications, was that powders that exhibit performance based on physical characteristics could have their handling and strength properties tailored with little change in their primary function.
Date: January 1, 1987
Creator: Vannet, M. D. & Ball, G. L.
Partner: UNT Libraries Government Documents Department

Integral window hermetic fiber optic components

Description: In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.
Date: December 31, 1994
Creator: Dalton, R.D.; Kramer, D.P.; Massey, R.T. & Waker, D.A.
Partner: UNT Libraries Government Documents Department

Evaluation of a non-cyanide gold plating process for switch tubes

Description: Switch tubes are used in nuclear weapon firing sets and are required to be reliable and impervious to gas permeation for many years. To accomplish this, a gold plated coating of approximately 25 microns is required over all metal surfaces on the tube exterior. The gold has historically been plated using gold cyanide plating chemistry. In this work we proposed to replace the cyanide plating bath with an environmentally friendlier sulfite gold plating bath. Low and high pH sulfite plating chemistries were investigated as possible replacements for the cyanide gold plating chemistry. The low pH plating chemistry demonstrated a gold plated coating which met the high purity, grain size, and hardness requirements for switch tubes. The high pH chemistry was rejected primarily because the hardness of the gold plated coatings was too high and exceeded switch tube coating requirements. A problem with nodule formation on the gold plated surface using the low pH chemistry had to be resolved during this evaluation. The nodule formation was postulated to be produced by generation of SO{sub 2} in the low pH bath causing gold to be precipitated out when the sulfite concentration falls below a minimum level. The problem was resolved by maintaining a higher sulfite concentration and providing an active filtration system during plating. In this initial study, there were no major obstacles found when using a sulfite gold bath for switch tube plating, however, further work is needed on bath control and bath life before adopting it as the primary plating chemistry.
Date: January 1, 1996
Creator: Norwood, D.P. & Martinez, F.E.
Partner: UNT Libraries Government Documents Department

An investigation of bridge width measurement and processing capabilities (1985)

Description: An investigation of Mound`s ability to measure and process bridges was conducted in 1985. Prior to improvements in the measuring system and technique, bridge width was found to have a sigma of 0.00019 in. After improvements were made, a sigma of 0.000047 was realized. Bridge length was found to be more erratic than width, although most of the inaccuracy was caused by measurement uncertainty. Length and width were found to have little or no correlation.
Date: May 15, 1989
Creator: Armstrong, K.P.
Partner: UNT Libraries Government Documents Department