318 Matching Results

Search Results

Advanced search parameters have been applied.

Mission analysis report - deactivation facilities at Hanford

Description: This document examines the portion of the Hanford Site Cleanup Mission that deals with facility deactivation. How facilities get identified for deactivation, how they enter EM-60 for deactivation, programmatic alternatives to perform facility deactivation, the deactivation process itself, key requirements and objectives associated with the deactivation process, and deactivation planning are discussed.
Date: September 27, 1996
Creator: Lund, D. P.
Partner: UNT Libraries Government Documents Department

Building 235-F Goldsim Fate And Transport Model

Description: Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.
Date: September 14, 2012
Creator: Taylor, G. A. & Phifer, M. A.
Partner: UNT Libraries Government Documents Department

Demonstration of the Robotic Gamma Locating and Isotopic Identification Device

Description: The United States Department of Energy (DOE) continually seeks safer and more cost- effective technologies for use in decontaminating and decommissioning nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area of DOE's Office of Science and Technology sponsors Large-Scale Demonstration and Deployment Projects (LSDDP) to test new technologies. As part of these projects, developers and vendors showcase new products designed to decrease health and safety risks to personnel and the environment, increase productivity, and lower costs. As part of the FY 2000 and 2001 LSDDP, the Idaho National Engineering and Environmental Laboratory (INEEL) collaborated with the Russian Research and Development Institute of Construction Technology (NIKIMT). This collaboration resulted in the development of the Robotic Gamma Locating and Isotopic Identification Device (RGL&IID) which integrated DOE Robotics Crosscutting (Rbx) technology with NIKIMT Russian gamma locating and isotopic identification technology. This paper will discuss the technologies involved in this integration and results from the demonstration including reduction of personnel exposure, increase in productivity, and reduced risk.
Date: August 1, 2002
Creator: Anderson, Matthew Oley; Conner, Craig C; Daniel, Vincent Elvernard; Mckay, Mark D & Yancey, Neal Adam
Partner: UNT Libraries Government Documents Department

A Well-Defined, Silica-Supported Tungsten Imido Alkylidene OlefinMetathesis Catalyst

Description: The reaction of [W(=NAr)(=CHtBu)(CH2tBu)2](1; Ar =2,6-iPrC6H3) with a silica partially dehydroxylated at 700oC, SiO2-(700),gives syn-[(_SiO)W(=NAr)(=CHtBu)(CH2tBu)](2) as a major surface species,which was fully characterized by mass balance analysis, IR, NMR, EXAFS,and DFT periodic calculations. Similarly, complex 1 reacts with[(c-C5H9)7Si7O12SiOH]to give [(SiO)W(=NAr)(=CHtBu)(CH2tBu)](2m), whichshows similar spectroscopic properties. Surface complex 2 is a highlyactive propene metathesis catalyst, which can achieve a TON of 16000within 100 h, with only a slow deactivation.
Date: June 13, 2006
Creator: Rhers, Bochra; Salameh, Alain; Baudouin, Anne; Quadrelli, ElsjeA.; Taoufik, Mostafa; Coperet, Christophe et al.
Partner: UNT Libraries Government Documents Department

309 Facility deactivation and decommisioning Criteria Completion Check Lists

Description: To facilitate and track completion of the 309 Facility turnover criteria completion an Applicability Matrix and Criteria Completion Check Lists were prepared. The applicability matrix documents the required turnover criteria for a given area in the facility or scope of work. The applicable criteria is selected for 16 different areas. For each area a completion checklist is provided to document completion of a requirement by WHC and the Environmental Restoration Contractor.
Date: February 1, 1996
Creator: Cornwell, B.C.
Partner: UNT Libraries Government Documents Department

340 Waste handling facility deactivation plan

Description: This document provides an overview of both the present status of the 340 Complex (within Hanford`s 300 Area), and of tasks associated with the deactivation of segments associated with radioactive, mixed liquid waste receipt, storage, and shipping. The plan also describes activities that will allow portions of the 340 Complex to remain in service.
Date: December 27, 1996
Creator: Stordeur, R.T., Westinghouse Hanford
Partner: UNT Libraries Government Documents Department

Laboratory Evaluation of Underwater Grouting of CPP-603 Basins

Description: A project is underway to deactivate a Fuel Storage Basin. The project specifies the requirements and identifies the tasks that will be performed for deactivation of the CPP- 603 building at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The Fuel Receiving and Storage Building (CPP- 603) was originally used to receive and store spent nuclear fuel from various facilities. The area to undergo deactivation includes the three spent nuclear fuel storage basins and a transfer canal (1.5 million gallons of water storage). Deactivation operations at the task site include management of the hot storage boxes and generic fuel objects, removal of the fuel storage racks, basin sludge, water evaporation and basin grouting, and interior equipment, tanks, and associated components. This includes a study to develop a grout formulation and placement process for this deactivation project. Water will be allowed to passively evaporate to reduce the spread of contamination from the walls of the basin. The basins will be filled with grout, underwater, as the water evaporates to maintain the basin water at a safe level. The objective of the deactivation project is to eliminate potential exposure to hazardous and radioactive materials and eliminate potential safety hazards associated with the CPP-603 building.
Date: February 1, 2002
Creator: Johnson, Virgil James; Pao, Jenn Hai; Demmer, Ricky Lynn & Tripp, Julia Lynn
Partner: UNT Libraries Government Documents Department

Demonstration of the Robotic Gamma Locating and Isotopic Identification Device

Description: The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in decontaminating and decommissioning nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area of DOE's Office of Science and Technology sponsors Large-Scale Demonstration and Deployment Projects (LSDDP) to test new technologies. As part of these projects, developers and vendors showcase new products designed to decrease health and safety risks to personnel and the environment, increase productivity, and lower costs. As part of the FY 2000 and 2001 LSDDP, the Idaho National Engineering and Environmental Laboratory (INEEL) collaborated with the Russian Research and Development Institute of Construction Technology (NIKIMT). This collaboration resulted in the development of the Robotic Gamma Locating and Isotopic Identification Device (RGL and IID) which integrated DOE Robotics Crosscutting (Rbx) technology with NIKIMT Russian gamma locating and isotopic identification technology. This paper will discuss the technologies involved in this integration and results from the demonstration including reduction of personnel exposure, increase in productivity, and reduced risk.
Date: May 8, 2002
Creator: Anderson, M.O.; Conner, C.C.; Daniel, V.E.; McKay, M.D. & Yancey, N.A.
Partner: UNT Libraries Government Documents Department

CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) HISTORY & STATUS & FUTURE PLANS

Description: In 1993, the US Department of Energy (DOE) decided to shut down the Fast Flux Test Facility (FFTF) due to lack of national missions that justified the annual operating budget of approximately $88M/year. The initial vision was to ''deactive'' the facility to an industrially and radiologically safe condition to allow long-term, minimal surveillance storage until approximately 2045. This approach would minimize near term cash flow and allow the radioactive decay of activated components. The final decontamination and decommissioning (D and D) would then be performed using then-current methodology in a safe and efficient manner. the philosophy has now changed to close coupling the initial deactivation with final D and D. This paper presents the status of the facility and focuses on the future challenge of sodium removal.
Date: February 24, 2006
Creator: FARABEE, O.A.
Partner: UNT Libraries Government Documents Department

Deactivation, Decontamination and Decommissioning Project Summaries

Description: This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.
Date: July 1, 2001
Creator: Peterson, David Shane & Webber, Frank Laverne
Partner: UNT Libraries Government Documents Department

Pressure gradient passivation of carbonaceous material normally susceptible to spontaneous combustion

Description: This invention is a process for the passivation or deactivation with respect to oxygen of a carbonaceous material by the exposure of the carbonaceous material to an oxygenated gas in which the oxygenated gas pressure is increased from a first pressure to a second pressure and then the pressure is changed to a third pressure. Preferably a cyclic process which comprises exposing the carbonaceous material to the gas at low pressure and increasing the pressure to a second higher pressure and then returning the pressure to a lower pressure is used. The cycle is repeated at least twice wherein the higher pressure may be increased after a selected number of cycles.
Date: January 29, 2002
Creator: Ochs, Thomas L.; Sands, William D.; Schroeder, Karl; Summers, Cathy A. & Utz, Bruce R.
Partner: UNT Libraries Government Documents Department

300 Area D4 Project Fiscal Year 2007 Building Completion Report

Description: This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of twenty buildings in the 300 Area of the Hanford Site. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.
Date: January 15, 2009
Creator: Westberg, R. A.
Partner: UNT Libraries Government Documents Department

UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007

Description: The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste Processing programs, EM-21 has focused considerable effort on identifying the key areas of risk in the Waste ...
Date: August 12, 2008
Creator: Bush, S
Partner: UNT Libraries Government Documents Department

Predicting Efficient Antenna Ligands for Tb(III) Emission

Description: A series of highly luminescent Tb(III) complexes of para-substituted 2-hydroxyisophthalamide ligands (5LI-IAM-X) has been prepared (X = H, CH{sub 3}, (C=O)NHCH{sub 3}, SO{sub 3}{sup -}, NO{sub 2}, OCH{sub 3}, F, Cl, Br) to probe the effect of substituting the isophthalamide ring on ligand and Tb(III) emission in order to establish a method for predicting the effects of chromophore modification on Tb(III) luminescence. The energies of the ligand singlet and triplet excited states are found to increase linearly with the {pi}-withdrawing ability of the substituent. The experimental results are supported by time-dependent density functional theory (TD-DFT) calculations performed on model systems, which predict ligand singlet and triplet energies within {approx}5% of the experimental values. The quantum yield ({Phi}) values of the Tb(III) complex increases with the triplet energy of the ligand, which is in part due to the decreased non-radiative deactivation caused by thermal repopulation of the triplet. Together, the experimental and theoretical results serve as a predictive tool that can be used to guide the synthesis of ligands used to sensitize lanthanide luminescence.
Date: October 6, 2008
Creator: Samuel, Amanda P.S.; Xu, Jide & Raymond, Kenneth
Partner: UNT Libraries Government Documents Department

Cost and Performance Report for the ASTD Reuse of Concrete Within DOE from D&D Projects

Description: This cost and performance report describes the Accelerated Site Technology Deployment project that developed the Protocol for Development of Authorized Release Limits for Concrete at U.S. DOE Sites, which identifies the steps for obtaining approval to reuse concrete from Deactivation and Decommissioning of facilities. This protocol compares the risk and cost of various disposition paths for the concrete and follows the authorized release approach described in the DOE's draft handbook, Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material. This approach provides for the development of authorized release limits through a series of prescribed steps before approval for release is granted. A case study was also completed on a previously decommissioned facility.
Date: September 1, 2000
Creator: Kamboj, S.; Arnish, J.; Chen, S. Y.; Phillips, Ann Marie; Meservey, Richard Harlan & Tripp, Julia Lynn
Partner: UNT Libraries Government Documents Department

PUREX/UO3 Facilities deactivation lessons learned history

Description: Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitric acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings and were accompanied by and ...
Date: September 19, 1996
Creator: Gerber, M.S.
Partner: UNT Libraries Government Documents Department

Results of hydrotreating the kerosene fraction of HTI`S first proof of concept run

Description: The objective of Sandia`s hydrotreating study is to determine the relationships between hydrotreating conditions and product characteristics for coal liquids produced using current technologies. The coal-derived liquid used in the current work is the kerosene fraction of the product from Hydrocarbon Technologies Inc.`s first proof-of-concept run for it`s Catalytic Two-Stage Liquefaction Technology. Sandia`s hydrotreating experiments were performed in a continuous operation, microflow reactor system using aged HDN-60 catalyst. A factorial experimental design with three variables (temperature, pressure, liquid hourly space velocity) was used in this work. Nitrogen and sulfur contents of the feed and hydrotreated products were determined using an Antek 7000 Sulfur and Nitrogen Analyzer. Multiple samples were collected at each set of reaction conditions to ensure that each condition was lined out. Hydrotreating at each set of reaction conditions was repeated so that results could be normalized for catalyst deactivation. The normalized results were statistically analyzed. Increases in temperature and pressure had the greatest effects on nitrogen removal. The highest severity condition (388{degrees}C, 1500 psig H{sub 2}, 1.5g/h/g(cat)) gave a measured nitrogen value of <5 ppm.
Date: June 1, 1996
Creator: Stohl, F.V.; Lott, S.E.; Diegert, K.V. & Goodnow, D.C.
Partner: UNT Libraries Government Documents Department

Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

Description: This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S&M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed.
Date: April 1, 1997
Partner: UNT Libraries Government Documents Department

Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

Description: The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed.
Date: September 1, 1997
Partner: UNT Libraries Government Documents Department

Final deactivation report on the radioisotope area services, Building 3034, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

Description: The purpose of this report is to document the condition of Bldg. 3034, after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration (EM-40) Program. This report provides a history and profile of Bldg. 3034 before commencement of deactivation activities and a profile of the building after completion of deactivation activities. Turnover, items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, an supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover Package, are discussed. Building 3034 will require access to facilitate required surveillance and maintenance (S&M) activities to maintain the building safety envelope. Building 3034 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S&M effort would be required to maintain the building safety envelope. In addition to the minimal S&M activities, the building will be occupied by the maintenance coordinator and the S&M supervisor for the Isotopes Facilities Deactivation Project. The exterior doors are locked when unoccupied to prevent unauthorized access. All materials have been removed from the building. Piping and alarms have been deactivated.
Date: September 1, 1997
Partner: UNT Libraries Government Documents Department

Final deactivation report on the radioisotope production Lab-D, Building 3031, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

Description: The purpose of this report is to document the condition of Bldg. 3031 after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration (EM-40) Program. This report provides a profile of Bldg. 3031 before and after deactivation activities. Turnover items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover package, are discussed. Building 3031 will require access to facilitate required surveillance and maintenance activities to maintain the building safety envelope. Building 3031 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal surveillance and maintenance effort would be required to maintain the building safety envelope. Other than the minimal surveillance and maintenance activities, the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required surveillance and maintenance. All materials have been removed from the building and the hot cell, and all utility systems, piping, and alarms have been deactivated.
Date: August 1, 1997
Partner: UNT Libraries Government Documents Department

Isotopes facilities deactivation project at Oak Ridge National Laboratory

Description: The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation`s Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program.
Date: May 1, 1997
Creator: Eversole, R.E.
Partner: UNT Libraries Government Documents Department