180 Matching Results

Search Results

Advanced search parameters have been applied.

Adjustable cutting tool holder

Description: This patent application describes a device for varying the geometry of a cutting tool for use in machining operations.
Date: September 21, 2000
Creator: Steinhour, William Lee III; West, Drew; Honeycutt, Steve; Frank, Steven & Krishnamurthy, Kallutla
Partner: UNT Libraries Government Documents Department

Evaluation of End Mill Coatings

Description: Milling tests were run on families of High Speed Steel (HSS) end mills to determine their lives while machining 304 Stainless Steel. The end mills tested were made from M7, M42 and T15-CPM High Speed Steels. The end mills were also evaluated with no coatings as well as with Titanium Nitride (TiN) and Titanium Carbo-Nitride (TiCN) coatings to determine which combination of HSS and coating provided the highest increase in end mill life while increasing the cost of the tool the least. We found end mill made from M42 gave us the largest increase in tool life with the least increase in cost. The results of this study will be used by Cutting Tool Engineering in determining which end mill descriptions will be dropped from our tool catalog.
Date: August 1, 2005
Creator: Lazarus, L. J. & R. L. Hester,
Partner: UNT Libraries Government Documents Department

A Flexure-Based Tool Holder for Sub-(micro)m Positioning of a Single Point Cutting Tool on a Four-axis Lathe

Description: A tool holder was designed to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-{micro}m accuracy on a four-axis lathe. A four-axis lathe incorporates a rotary table that allows the cutting tool to swivel with respect to the workpiece to enable the machining of complex workpiece forms, and accurately machining complex meso-scale parts often requires that the cutting tool be aligned precisely along the axis of rotation of the rotary table. The tool holder designed in this study has greatly simplified the process of setting the tool in the correct location with sub-{micro}m precision. The tool holder adjusts the tool position using flexures that were designed using finite element analyses. Two flexures adjust the lateral position of the tool to align the center of the nose of the tool with the axis of rotation of the B-axis, and another flexure adjusts the height of the tool. The flexures are driven by manual micrometer adjusters, each of which provides a minimum increment of motion of 20 nm. This tool holder has simplified the process of setting a tool with sub-{micro}m accuracy, and it has significantly reduced the time required to set a tool.
Date: December 5, 2005
Creator: Bono, M J & Hibbard, R L
Partner: UNT Libraries Government Documents Department

Annual Report Electrochemical Machining of Access Holes

Description: We report the advances made in electrochemical machining of access holes through sheet metal during FY2005. The cutting tool underwent a major engineering re-design to accommodate an oblong cut with parallel sides (1.5'' spacing) on a surface of arbitrary curvature. The solid cathode was replaced by an array of separately movable steel pins, allowing the tool to conform to the surface shape of the work piece prior to beginning cutting. Preliminary cuts through a hardened steel drum (0.04 inch thickness) were successfully completed at a low current (50A) but the current efficiency of the cutting process was poor (<30%). Efficiency was improved to 75% and the cutting time reduced to 8 minutes in heated electrolyte at 100 A and 4.5 V. This work led to improvements in process simplicity and ease of operation: (1) continuous movement of the cathode towards the work piece was eliminated in favor of a fixed cathode; (2) the surfaces of the cutting pins do not require insulation; (3) a spider support for the tool provides for rapid positioning of the cutting tool; (4) negative electrolyte pressure minimized leakage into the drum following breakthrough. We found no reactivity of various HE's with alternative candidate ECM electrolytes.
Date: January 4, 2006
Creator: Cooper, J F; Evans, M & Whipple, R
Partner: UNT Libraries Government Documents Department

Selection and Implementation of a Replacement Cutting Tool Selection Application

Description: A new commercial cutting tool software package replaced an internally created legacy system. This report describes the issues that surfaced during the migration and installation of the commercial package and the solutions employed. The primary issues discussed are restructuring the data between two drastically different database schemas and the creation of individual component graphics.
Date: October 6, 2008
Creator: Rice, Gordon
Partner: UNT Libraries Government Documents Department

Characterization and Qualification of a Precision Diamond Saw

Description: A precision diamond saw was characterized and qualified for production using the MCCS Encryption Translator (MET) network. This characterization was performed in three steps. First the equipment was evaluated and characterized, and then a process was developed and characterized to saw cofire networks. Finally, the characterized process was qualified for production using the MET network. During the development of the low-temperature cofired ceramic (LTCC) processes needed to build the MCCS Encryption Translator (MET) network, a problem was uncovered. The laser process planned for scribing and separating was found to weaken the LTCC material by about 30%. A replacement process was needed, and precision diamond sawing was chosen. During the equipment evaluation and characterization, several parameters were investigated. These were cut depth, feed rate, spindle speed, and saw blade thickness. Once these were understood the process was then developed. Initially 24 variables were identified for the process, and eventually 12 of these variables were found to be critical. These variables were then adjusted until a process envelope was found that produced acceptable product. Finally parameters were chosen from the middle of the process envelope for production. With the production process set, the next step was to qualify it for production. Two criteria had to be met: visual acceptability and bending strength. The parts were examined under a microscope and found to be visually acceptable. Parts were then put through a four-point bend test, and the strengths recorded were equivalent to those measured in the past. With the completion of this work and the acceptable results, this process was qualified for production use.
Date: March 4, 1999
Creator: Morgenstern, H.A.
Partner: UNT Libraries Government Documents Department

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual technical report, 1 January 1996--30 June 1996

Description: Two specific objectives of Solarex`s program are to reduce the manufacturing cost for polycrystalline silicon photovoltaic modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. This report highlights accomplishments during the period of January 1 through June 30, 1996. Accomplishments include: began the conversion of production casting stations to increase ingot size; operated the wire saw in a production mode with higher yields and lower costs than achieved on the ID saws; developed and qualified a new wire guide coating material that doubles the wire guide lifetime and produces significantly less scatter in wafer thickness; completed a third pilot run of the cost-effective Al paste back-surface-field (BSF) process, verifying a 5% increase in cell efficiency and demonstrating the ability to process and handle the BSF paste cells; completed environmental qualification of modules using cells produced by an all-print metallization process; optimized the design of the 15.2-cm by 15.2-cm polycrystalline silicon solar cells; demonstrated the application of a high-efficiency process in making 15.2-cm by 15.2-cm solar cells; demonstrated that cell efficiency increases with decreasing wafer thickness for the Al paste BSF cells; qualified a vendor-supplied Tedlar/ethylene vinyl acetate (EVA) laminate to replace the combination of separate sheets of EVA and Tedlar backsheet; demonstrated the operation of a prototype unit to trim/lead attach/test modules; and demonstrated the operation of a wafer pull-down system for cassetting wet wafers.
Date: January 1, 1997
Creator: Wohlgemuth, J.
Partner: UNT Libraries Government Documents Department

Radial cutting torch

Description: The project`s aim is to complete development of the Radial Cutting Torch, a pyrotechnic cutter, for use in all downhole tubular cutting operations in the petroleum industry. Project objectives are to redesign and pressure test nozzle seals to increase product quality, reliability, and manufacturability; improve the mechanical anchor to increase its temperature tolerance and its ability to function in a wider variety of wellbore fluids; and redesign and pressure test the RCT nozzle for operation at pressures from 10 to 20 ksi. The proposal work statement is included in the statement of work for the grant via this reference.
Date: January 8, 1997
Creator: Robertson, M.C.
Partner: UNT Libraries Government Documents Department

Micrometer-Scale Machining of Metals and Polymers Enabled by Focused Ion Beam Sputtering

Description: This work combines focused ion beam sputtering and ultra-precision machining for microfabrication of metal alloys and polymers. Specifically, micro-end mills are made by Ga ion beam sputtering of a cylindrical tool shank. Using an ion energy of 20keV, the focused beam defines the tool cutting edges that have submicrometer radii of curvature. We demonstrate 25 {micro}m diameter micromilling tools having 2, 4 and 5 cutting edges. These tools fabricate fine channels, 26-28 microns wide, in 6061 aluminum, brass, and polymethyl methacrylate. Micro-tools are structurally robust and operate for more than 5 hours without fracture.
Date: December 22, 1998
Creator: Adams, D.P.; Benavides, G.L. & Vasile, M.J.
Partner: UNT Libraries Government Documents Department

Advanced cryogenics for cutting tools. Final report

Description: The purpose of the investigation was to determine if cryogenic treatment improved the life and cost effectiveness of perishable cutting tools over other treatments or coatings. Test results showed that in five of seven of the perishable cutting tools tested there was no improvement in tool life. The other two tools showed a small gain in tool life, but not as much as when switching manufacturers of the cutting tool. The following conclusions were drawn from this study: (1) titanium nitride coatings are more effective than cryogenic treatment in increasing the life of perishable cutting tools made from all cutting tool materials, (2) cryogenic treatment may increase tool life if the cutting tool is improperly heat treated during its origination, and (3) cryogenic treatment was only effective on those tools made from less sophisticated high speed tool steels. As a part of a recent detailed investigation, four cutting tool manufacturers and two cutting tool laboratories were queried and none could supply any data to substantiate cryogenic treatment of perishable cutting tools.
Date: October 1, 1996
Creator: Lazarus, L. J.
Partner: UNT Libraries Government Documents Department

Innovative technology summary report: High-speed clamshell pipe cutter

Description: The Hanford Site C Reactor Technology Demonstration Group demonstrated the High-Speed Clamshell Pipe Cutter technology, developed and marketed by Tri Tool Inc. (Rancho Cordova, California). The models demonstrated are portable, split-frame pipe lathes that require minimal radial and axial clearances for severing and/or beveling in-line pipe with ranges of 25 cm to 41 cm and 46 cm to 61 cm nominal diameter. The radial clearance requirement from the walls, floors, or adjacent pipes is 18 cm. The lathes were supplied with carbide insert conversion kits for the cutting bits for the high-speed technique that was demonstrated. Given site-specific factors, this demonstration showed the cost of the improved technology to be approximately 30% higher than the traditional (baseline) technology (oxyacetylene torch) cost of $14,400 for 10 cuts of contaminated 41-cm and 61-cm-diameter pipe at C Reactor. Actual cutting times were faster than the baseline technology; however, moving/staging the equipment took longer. Unlike the baseline torch, clamshell lathes do not involve applied heat, flames, or smoke and can be operated remotely, thereby helping personal exposures to be as low as reasonably achievable. The baseline technology was demonstrated at the C Reactor north and south water pipe tunnels August 19--22, 1997. The improved technology was demonstrated in the gas pipe tunnel December 15--19.
Date: September 1, 1998
Partner: UNT Libraries Government Documents Department

Machinability study of Aermet 100

Description: Machinability of Aermet 100, an ultrahigh strength alloy developed for Navy by Carpenter Technology as a candidate material for aircraft landing gear application, was studied by performing single-point turning tests. Coated and uncoated carbides, ceramic, and cermet cutting tool inserts of a square geometry (SNG 432 type) were used. Round stock workpieces were tested in the as - received, unaged condition and without using any cutting fluid. The turning tests for each tool material were conducted by (i) first establishing the cutting conditions that would allow the continued generation of broken chips during a given cutting test, (ii) measuring intermittently the flank wear as a function of cutting time under such established cutting conditions for discontinuous broken chips, and (iii) determining the tool life using the criteria specified in the ISO Standard 3685: 1993(E). Cutting tools except some uncoated carbide and ceramic were used with a mechanical chip breaker to induce chip breakage and avoid the generation of long continuous chips. The results obtained include the optimal cutting conditions for discontinuous chips, tool wear - cutting time curves, and records of tool life and tool failure mode for each tool material. From the measured tool life and cutting conditions, the amount of material removed by each cutting material was calculated. Coated carbide with CVD tri-phase coating showed the longest tool life that exceeded the twelve minute criterion and removed the highest amount of material per tool. Other tools failed by cutting edge chipping and their lives were shorter.
Date: February 8, 1995
Creator: Squire, D. V.; Syn, C. K. & Fix, B. L.
Partner: UNT Libraries Government Documents Department


Description: FIU-HCET participated in an ICT meeting at Mound during the second week of December and presented a brief videotape of the testing of the Robotic Climber technology. During this meeting, FIU-HCET proposed the TechXtract technology for possible testing at Mound and agreed to develop a five-page proposal for review by team members. FIU-HCET provided assistance to Bartlett Inc. and General Lasertronics Corporation in developing a proposal for a Program Opportunity Notice (PON). The proposal was submitted by these companies on January 5, 1999. The search for new equipment dismantlement technologies is continuing. The following vendors have responded to requests for demonstration: LUMONICS, Laser Solutions technology; CRYO-BEAM, Cryogenic cutting technology; Waterjet Technology Association, Waterjet Cutting technology; and DIAJET, Waterjet Cutting technology. Based on the tasks done in FY98, FIU-HCET is working closely with Numatec Hanford Corporation (NHC) and Pacific Northwest National Laboratory (PNNL) to revise the plan and scope of work of the pipeline plugging project in FY99, which involves activities of lab-scale flow loop experiments and a large-scale demonstration test bed.
Date: January 1999
Creator: Ebadian, M. A.
Partner: UNT Libraries Government Documents Department

Disturbance Rejection Control of an Electromagnetic Bearing Spindle

Description: The force exerted on the rotor by an active magnetic bearing (AMB) is determined by the current flow in the magnet coils. This force can be controlled very precisely, making magnetic bearings a potential benefit for grinding, where cutting forces act as external disturbances on the shaft, resulting in degraded part finish. It is possible to achieve precise shaft positioning, reduce vibration of the shaft caused by external disturbances, and even damp out resonant modes. Adaptive control is an appealing approach for these systems because the controller can tune itself to account for an unknown periodic disturbance, such as cutting or grinding forces, injected into the system. In this paper the authors show how one adaptive control algorithm can be applied to an AMB system with a periodic disturbance applied to the rotor. An adaptive algorithm was developed and implemented in both simulation and hardware, yielding significant reductions in rotor displacement in the presence of an external excitation. Ultimately, this type of algorithm could be applied to a magnetic bearing grinder to reduce unwanted motion of the spindle which leads to poor part finish and chatter.
Date: August 31, 2000
Partner: UNT Libraries Government Documents Department

Integrated approach to advanced machining

Description: The residual stress state induced by machining in a Ti alloy as function of cutting tool sharpness and depth of cut was predicted and measured. Residual stresses were greater for the dull tool than for the sharp tool. XRD was used to measure the residual stress state of the material; these measurements revealed that the hoop stress increased with depth of cut; however the radial stress decreased with depth of cut. An elastic-plastic model provided a possible explanation for this behavior in that, for small depths of cut, the tool makes multiple passes through the damage subsurface layer. This causes both residual stress components to increase, but the radial stress increases by a much greater amount than the hoop stress.
Date: August 1, 1997
Creator: LeSar, R.A.; Bourke, M.A.M.; Rangaswamy, P.; Day, R.D. & Hatch, D.J.
Partner: UNT Libraries Government Documents Department

Remotely operable modular shear system for shearing nuclear reactor spent fuel conceptual design. Final summary report

Description: A unique feature of the shear system is the requirement for a removable master tool module and tool submodule assembly. Each tooling submodule is designed specifically to meet the compaction, gagging, and shearing requirements for specific spent fuel assemblies. These submodules are interchangeable within a common master tool module housing. The cross section of the spent fuel assemblies range from a 4.575-in. hexagonal shrouded to a 8.75-in. square grid-unshrouded. A number of interrelated initial design problems had to be solved: a hydraulic force system arrangement with minimum spacing between cylinders; readily removable couplings between the force system and associated tooling submodule; couplings with maximum stiffness and minimum geometry; a roller bearing system for each tool submodule and hydraulic stem assembly; and long life tool operation under high loads, wear, high temperaure, and corrosive conditions. It was established that the cylinder arrangement should consist of three 200-ton, 10-in. dia tandem cylinders, and one 100-ton, 10-in. dia standard cylinder at 3000 psi operating pressure. The shear would be operated by two - 200 ton tandem cylinders in a vertical straddle mode about the horizontal center line of the tooling arrangement. The compactor would be operated by one - 200 ton tandem cylinder at the center line of the fuel assembly and tooling arrangement. The gag would be operated by one - 100 ton standard cylinder at the center line of the compacted fuel assembly and tooling arrangement.
Date: June 16, 1978
Creator: Buckingham, D.
Partner: UNT Libraries Government Documents Department

Method for cutting steam heat losses during cyclic steam injection of wells. Fourth quarterly report

Description: Effective Gravel-packing of horizontal wells is difficult to achieve, using conventional pre-slotted liners, yet it is generally required in the soft Heavy Oil reservoir rocks of California, where cyclic steam injection has been proven to be the most cost-effective oil recovery method. The proposed method of gravel placement behind a non-perforated liner, which is later perforated {open_quotes}in situ{close_quotes} with a new tool operated by coiled-tubing, is expected to greatly reduce costs resulting from sand production in horizontal wells operated under cyclic steam injection. The detailed configuration of the prototype tool is described. It includes two pairs of cutting wheels at the ends of spring-loaded pivoting arms, which are periodically pressed through the liner wall and shortly thereafter retracted, while the coiled tubing is being pulled-out. For each operating cycle of the hydraulically-operated tool, this results in a set of four narrow slots parallel to the liner axis, in two perpendicular diametral planes. The shape of the edges of each slot facilitates bridging by the gravel particles, for a more effective and compacted gravel-packing. The tool includes a few easily-assembled parts machined from surface-hardened alloy steel presenting great toughness, selected from those used in die making. The operation of the system and potential future improvements are outlined. The method of fabrication, detailed drawings and specifications are given. They will serve as a basis for negotiating subcontracts with qualified machine shops.
Date: February 1, 1995
Partner: UNT Libraries Government Documents Department

Prior Year Accomplishments Can Opener Project

Description: This report documents the work preformed on the project for Quality Evaluation Organization (QEO) from October 1998 through September 1999. Welded metal cans are used to store many components in the Y-12 Plant. The current process for opening these cans is to cut off the weld with hand operated nippers or shears. This causes excessive lid destruction and it also produces a rough and uneven edge that is difficult to reweld. (See Sketch 1) QEO personnel expressed a need for a better solution to these problems. Finding a better ''can opener'' that is quick and easy to use, reduces lid destruction, and produces a surface that enhances rewelding was the objective of this work.
Date: September 30, 1999
Creator: Speer, C.H.
Partner: UNT Libraries Government Documents Department

A procedure for diamond turning KDP crystals

Description: A procedure and the equipment necessary for single-point diamond flycutting (loosely referred to as diamond turning) potassium di-hydrogen phosphate (KDP) crystals are described. It is based on current KDP diamond turning activities at the Lawrence Livermore National Laboratory (LLNL), drawing upon knowledge from the Nova crystal finishing development during the 1980`s and incorporating refinements from our efforts during 1995. In addition to describing a step-by-step process for diamond turning KDP, specific discussions are included on the necessary diamond tool geometry and edge sharpness, cutting fluid, and crystal preparation, handling, cleaning, and inspection. The authors presuppose that the reader is already familiar with diamond turning practices.
Date: July 7, 1995
Creator: Montesanti, R.C. & Thompson, S.L.
Partner: UNT Libraries Government Documents Department


Description: A guide to the operation and maintenance of lathes for general shop work.
Date: November 29, 1940
Creator: United States. Army. Air Corps.
Partner: UNT Libraries Government Documents Department