1,028 Matching Results

Search Results

Advanced search parameters have been applied.

The Development of 6061-Aluminum Windows for the MICE LiquidAbsorber

Description: The thin windows for the Muon Ionization Cooling Experiment (MICE) liquid Absorber will be fabricated from 6061-T6-aluminum. The absorber and vacuum vessel thin windows are 300-mm in diameter and are 180 mm thick at the center. The windows are designed for an internal burst pressure of 0.68 MPa (100 psig) when warm. The MICE experiment design calls for changeable windows on the absorber, so a bolted window design was adopted. Welded windows offer some potential advantages over bolted windows when they are on the absorber itself. This report describes the bolted window and its seal. This report also describes an alternate window that is welded directly to the absorber body. The welded window design presented permits the weld to be ground off and re-welded. This report presents a thermal FEA analysis of the window seal-weld, while the window is being welded. Finally, the results of a test of a welded-window are presented.
Date: August 24, 2005
Creator: Lau, W.; Yang, S.Q.; Green, M.A.; Ishimoto, S. & Swanson, J.
Partner: UNT Libraries Government Documents Department

CRYOGENIC DATA BOOK

Description: Increased activities in Cryogenic Engineering have brought about the need for a compilation of available data. The purpose of the Cryogenic Data Book is to provide a condensed source of reliable data and reference information for those working in the cryogenic field. Specifically the data were compiled with a view toward the design of liquid hydrogen bubble chambers.
Date: May 15, 1956
Creator: Engineerin, National Bureau of Standards. Cryogenic; Chelton, Dudley B.; Mann, Douglas B.; Byrns, R.A. & Hoard, H.S.
Partner: UNT Libraries Government Documents Department

Implications for the Cryogenic Fielding of Leaking Beryllium Capsules

Description: In this paper we show that the ambient temperature measured leakage time constant, {tau}{sub RT}, is related to the leakage at cryogenic temperature, R{sub C}, by R{sub C}= 0.23{rho}{sub DT}V{sub sh}/ {tau}{sub RT} where {rho}{sub DT} is the density of cryogenic DT vapor, and V{sub sh} is the internal volume of the shell. We then calculate the size of voids that may result from leakage at the Be/DT interface, depending upon the number of leakage sites and {tau}{sub RT}. Even for the slowest leakers the potential void growth is excessive. Reasons that voids have not been seen in DT layering experiments to date include the lack of a technique to see isolated micronish bubbles, however possible mechanisms preventing void formation are also discussed.
Date: February 20, 2007
Creator: Cook, R
Partner: UNT Libraries Government Documents Department

Nitrogen trailer acceptance test report

Description: This Acceptance Test Report documents compliance with the requirements of specification WHC-S-0249. The equipment was tested according to WHC-SD-WM-ATP-108 Rev.0. The equipment being tested is a portable contained nitrogen supply. The test was conducted at Norco`s facility.
Date: February 12, 1996
Creator: Kostelnik, A.J.
Partner: UNT Libraries Government Documents Department

Development of 0.5-5 W, 10K Reverse Brayton Cycle Cryocoolers - Phase II Final Report

Description: Miniature cryocoolers for the 8-30 K range are needed to provide 0.5-5 w of cooling to high sensitivity detectors (for long-wave-length IR, magnetism, mm-wave, X-ray, dark matter, and possibly y-ray detection) while maintaining low mass, ultra-low vibration, and good efficiency. This project presents a new approach to eliminating the problems normally encountered in efforts to build low-vibration, fieldable, miniature cryocoolers. Using the reverse Brayton Cycle (RBC), the approach applies and expands on existing spinner technology previously used only in Nuclear Magnetic Resonance (NMR) probes.
Date: October 15, 2001
Creator: Doty, F. D.; Boman, A.; Arnold, S.; Spitzmesser, J. B.; Jones, D.; McCree, D. et al.
Partner: UNT Libraries Government Documents Department

Investigations on Absorber Materials at Cryogenic Temperatures

Description: In the framework of the 12 GeV upgrade project for the Continuous Electron Beam Accelerator Facility (CEBAF) improvements are being made to refurbish cryomodules housing Thomas Jefferson National Accelerator Facility’s (JLab) original 5-cell cavities. Recently we have started to look into a possible simplification of the existing Higher Order Mode (HOM) absorber design combined with the aim to find alternative material candidates. The absorbers are implemented in two HOM-waveguides immersed in the helium bath and operate at 2 K temperature. We have built a cryogenic setup to perform measurements on sample load materials to investigate their lossy characteristics and variations from room temperature down to 2 K. Initial results are presented in this paper.
Date: May 1, 2009
Creator: Frank Marhauser, Thomas Elliott, Robert Rimmer
Partner: UNT Libraries Government Documents Department

Progress of ILC High Gradient SRF Cavity R&D at Jefferson Lab

Description: Latest progress of ILC high gradient SRF cavity R&D at Jefferson Lab will be presented. 9 out of 10 real 9-cell cavities reached an accelerating gradient of more than 38 MV/m at a unloaded quality factor of more than 8 {center_dot} 109. New understandings of quench limitation in 9-cell cavities are obtained through instrumented studies of cavities at cryogenic temperatures. Our data have shown that present limit reached in 9-cell cavities is predominantly due to localized defects, suggesting that the fundamental material limit of niobium is not yet reached in 9-cell cavities and further gradient improvement is still possible. Some examples of quench-causing defects will be given. Possible solutions to pushing toward the fundamental limit will be described.
Date: September 1, 2011
Creator: R.L. Geng, J. Dai, G.V. Eremeev, A.D. Palczewski
Partner: UNT Libraries Government Documents Department

Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane

Description: The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.
Date: August 20, 2005
Creator: Green, Michael A.
Partner: UNT Libraries Government Documents Department

Review of Liquid Helium Level Sensors

Description: Reliability of liquid helium level sensors becomes critical whenever a cryostat needs to be completely welded and accessibility becomes limited. This paper presents a review of the currently available continuous LHe level sensors from the viewpoint of reliability and wide operating temperature range (1.5 - 5.0 K). The only in limited temperature segments 3.0 - 4.6 K and below the lambda-point. Specifications of a new, simple and wide temperature range level sensor which dissipates very low power (~ 6 mW) into the cryogenic system and that can measure level of any cryogenic liquid are also presented here.
Date: January 1, 1991
Creator: Myneni, Ganapati & Rao Myneni, Ganapati
Partner: UNT Libraries Government Documents Department

Simultaneous interferometric optical-figure characterizations for two optical elements in series: Proposition of an unconventional numerical integration scheme

Description: The article proposes a scheme to break a catch-22 loop in an optical-figure/wavefont measurement. For instance, to measure the tilt-independent optical-figure of a nominal optical flat at cryogenic temperatures, it requires a cryogenic dewar-window system for a Fizeau interferometer outside the dewar to see through. The issue is: how to calibrate in situ the window system using the yet-to-be-calibrated nominal optical flat, and vice versa, in only one cryogenic cooldown? The proposition includes: (a) interferometric phase-map measurements with the test piece slightly offset in different transverse directions, and (b) for synthesizing the 2-dimensional WDF, an unconventional numerical scheme starting with 1-dimensional bi-direction integration. The numerical scheme helps minimize the non-uniformity in integrated noise-power distribution that results from integrating data, and thus the associated uncorrelated random noise, from raw phase-maps. The numerical scheme represents a new concept specifically for integrating noise-carrying experimental data.
Date: March 20, 2006
Creator: Gwo, D
Partner: UNT Libraries Government Documents Department

LIFE: Recent Developments and Progress

Description: Test results from the NIF show excellent progress toward achieving ignition. Experiments designed to verify coupling of the laser energy to the fusion target have shown that the efficiency meets that needed for ignition. Several tests with the cryogenic targets needed for ignition have been performed, and world-record neutron output produced. The National Ignition Campaign is on schedule to meet its 2012 ignition milestone, with the next phase in the campaign due to start later this month. It has been a busy and very productive year. The NIF is in full 24/7 operations and has progressed markedly in the path toward ignition. The long-standing goal of the National Ignition Campaign to demonstrate ignition by the end of FY 2012 is on track. The LIFE plant design has matured considerably, and a delivery plan established based on close interactions with vendors. National-level reviews of fusion are underway, and are due to present initial findings later this year. A value proposition has been drafted for review. The LIFE project is ready to move into the delivery phase.
Date: April 8, 2011
Creator: Anklam, T M
Partner: UNT Libraries Government Documents Department

EXPERIENCE IN REDUCING ELECTRON CLOUD AND DYNAMIC PRESSURE RISE IN WARM AND COLD REGIONS IN RHIC.

Description: The large scale application of non-evaporable getter coating in RHIC has been effective in reducing the electron cloud. Since beams with higher intensity and smaller bunch spacing became possible in operation, the emittance growth is of concern. Study results are reported together with experiences of machine improvements: saturated NEG coatings, anti-grazing ridges in warm sections, and the pre-pumping in cryogenic regions.
Date: June 23, 2006
Creator: ZHANG, S.Y.; AHRENS,L.; ALLESI, J.; BAI, M.; BLASKIEWICZ, M.; CAMERON, P. et al.
Partner: UNT Libraries Government Documents Department

In situ freeze-capturing of fracture water using cryogenic coring

Description: Current methods do not allow for sampling of in situ water from unsaturated fractures in low-moisture environments. A novel cryogenic coring technique based on the method developed by Simon and Cooper (1996) is used to collect in situ water in unsaturated fractures. This method uses liquid nitrogen as the drilling fluid, which can freeze the fracture water in place while coring. Laboratory experiments are conducted to demonstrate that water in an unsaturated fracture can be frozen and collected using cryogenic coring.
Date: January 29, 2004
Creator: Su, Grace W.; Wang, Joseph S.Y. & Zacny, Kris
Partner: UNT Libraries Government Documents Department

Cryogenic Treatment of Production Components in High-Wear Rate Wells

Description: Deep Cryogenic Tempering (DCT) is a specialized process whereby the molecular structure of a material is ''re-trained'' through cooling to -300 F and then heating to +175-1100 F. Cryocon, Inc. (hereafter referred to as Cryocon) and RMOTC entered an agreement to test the process on oilfield production components, including rod pumps, rods, couplings, and tubing. Three Shannon Formation wells were selected (TD about 500 ft) based on their proclivity for high component wear rates. Phase 1 of the test involved operation for a nominal 120 calendar day period with standard, non-treated components. In Phase 2, treated components were installed and operated for another nominal 120 calendar day period. Different cryogenic treatment profiles were used for components in each well. Rod pumps (two treated and one untreated) were not changed between test phases. One well was operated in pumped-off condition, resulting in abnormal wear and disqualification from the test. Testing shows that cryogenic treatment reduced wear of rods, couplers, and pump barrels. Testing of production tubing produced mixed results.
Date: April 29, 2002
Creator: Milliken, M.
Partner: UNT Libraries Government Documents Department

CEBAF cryogenic system

Description: The CEBAF cryogenic system consists of 3 refrigeration systems: Cryogenic Test Facility (CTF), Central Helium Liquefier (CHL), and End Station Refrigerator (ESR). CHL is the main cryogenic system for CEBAF, consisting of a 4.8 kW, 2.0 K refrigerator and transfer line system to supply 2.0 K and 12 kW of 50 K shield refrigeration for the Linac cavity cryostats and 10 g/s of liquid for the end stations. This paper describes the 9-year effort to commission these systems, concentrating on CHL with the cold compressors. The cold compressors are a cold vacuum pump with an inlet temperature of 3 K which use magnetic bearings, thereby eliminating the possibility of air leaks into the subatmospheric He.
Date: December 31, 1995
Partner: UNT Libraries Government Documents Department

The CEBAF control system for the CHL

Description: The CEBAF Central Helium Liquefier (CHL) control system consists of independent safety controls located at each subsystem, CAMAC computer interface hardware, and a CEBAF-designed control software called Thaumaturgic Automated Control Logic (TACL). The paper describes how control software was interfaced with the subsystems of the CHL. Topics of configuration, editing, operator interface, datalogging, and internal logic functions are presented as they relate to the operational needs of the helium plant. The paper also describes the effort underway to convert from TACL to the Experimental Physics and Industrial Control System (EPICS), the new control system for the CEBAF accelerator. This software change will require customizing EPICS software to cryogenic process control.
Date: August 1, 1996
Creator: Keesee, M.S. & Bevins, B.S.
Partner: UNT Libraries Government Documents Department

The cryogenics of the LHC interaction region final focus superconducting magnets

Description: The LHC interaction region final focus magnets will include four superconducting quadrupoles cooled with pressurized, static superfluid helium at 1.9 K. The heat absorbed in pressurized He II, which may be more than 10 Watts per meter due to dynamic heating from the particle beam halo, will be transported to saturated He II at 1.8 K and removed by the 16 mbar vapor. This paper discusses the conceptual design for the cryogenics of the interaction region final focus superconducting magnets and the integration of this magnet system into the overall LHC cryogenic system.
Date: August 1, 1998
Creator: Byrns, R. & et al., FNAL
Partner: UNT Libraries Government Documents Department

Why cryogenically cooled, thin crystals handle extremely high power densities

Description: Recently, a new type of cryogenically cooled high heat load monochromator was proposed and, developed at Argonne National Laboratory and tested at European Synchrotron Radiation Facility (ESRF.) These tests showed that powers of 153 W and power densities of 450 W/mm{sup 2} cause only negligible strain. These powers and power densities are larger than will be absorbed by the first crystal on an undulator beamline at the Advanced Photon Source (APS). In our earlier work we suggested that the crystal might show strain at much lower values of the powers and power densities. We now can explain the ESRF results in terms of the unique role the negative thermal expansion coefficient of Si plays in minimizing strain.
Date: September 1, 1995
Creator: Knapp, G.S.; Jennings, G. & Beno, M.A.
Partner: UNT Libraries Government Documents Department

Reference Tables for Low-Temperature Thermocouples

Description: Report discussing the completed experimental program of the low-temperature reference tables for the commonly used thermocouples. Details of the experimental system, instrumentation, data analysis, error analysis, and materials tested are given in order to allow the user to better evaluate and apply the results.
Date: June 1972
Creator: Sparks, Larry L.; Powell, Robert L. & Hall, William J.
Partner: UNT Libraries Government Documents Department

Cryogenic tests of the g-2 superconducting solenoid magnet system

Description: The g-2 muon storage ring magnet system consists of four large superconducting solenoids that are up to 15.1 m in diameter. The g-2 superconducting solenoids and a superconducting inflector dipole will be cooled using forced two-phase helium in tubes. The forced two-phase helium cooling will be provided from the J-T circuit of a refrigerator that is capable of delivering 625 W at 4.5 K. The two-phase helium flows from the refrigerator J-T circuit through a heat exchanger in a storage dewar that acts as a phase separator for helium returning from the magnets. The use of a heat exchanger in the storage dewar reduces the pressure drop in the magnet flow circuit, eliminates most two phase flow oscillations, and it permits the magnets to operate at variable thermal loads using the liquid in the storage dewar as a buffer. The g-2 magnet cooling system will consist of three parallel two-phase helium flow circuits that provide cooling to the following components: (1) the four large superconducting solenoids, (2) the current interconnects between the solenoids and the solenoid gas cooled electrical leads, and (3) the inflector dipole and its gas cooled electrical leads. This report describes a cryogenic test of the two 15.1 meter diameter superconducting solenoids using two-phase helium from a dewar. The report describes the cool down procedure for the 3.5 ton outer solenoid magnet system using liquid nitrogen and two-phase helium. Low current operation of the outer solenoids is discussed.
Date: August 1995
Creator: Jia, L. X.; Cullen, J. R. ,Jr. & Esper, A. J.
Partner: UNT Libraries Government Documents Department

Neutron Detection with Cryogenics and Semiconductors

Description: The common methods of neutron detection are reviewed with special attention paid to the application of cryogenics and semiconductors to the problem. The authors' work with LiF- and boron-based cryogenic instruments is described as well as the use of CdTe and HgI{sub 2} for direct detection of neutrons.
Date: March 10, 2005
Creator: Bell, Z. W.; Carpenter, D. A.; Cristy, S. S. & Lamberti, V. E.
Partner: UNT Libraries Government Documents Department