86 Matching Results

Search Results

Advanced search parameters have been applied.

DOE EPSCoR Initiative in Structural and computational Biology/Bioinformatics

Description: The overall goal of the DOE EPSCoR Initiative in Structural and Computational Biology was to enhance the competiveness of Vermont research in these scientific areas. To develop self-sustaining infrastructure, we increased the critical mass of faculty, developed shared resources that made junior researchers more competitive for federal research grants, implemented programs to train graduate and undergraduate students who participated in these research areas and provided seed money for research projects. During the time period funded by this DOE initiative: (1) four new faculty were recruited to the University of Vermont using DOE resources, three in Computational Biology and one in Structural Biology; (2) technical support was provided for the Computational and Structural Biology facilities; (3) twenty-two graduate students were directly funded by fellowships; (4) fifteen undergraduate students were supported during the summer; and (5) twenty-eight pilot projects were supported. Taken together these dollars resulted in a plethora of published papers, many in high profile journals in the fields and directly impacted competitive extramural funding based on structural or computational biology resulting in 49 million dollars awarded in grants (Appendix I), a 600% return on investment by DOE, the State and University.
Date: February 21, 2008
Creator: Wallace, Susan S.
Partner: UNT Libraries Government Documents Department

Summary report of session VI

Description: This report gives a brief review of the presentations in Session VI of the Ecloud'02 Workshop and summarizes the major points during the discussions. Some points (e.g., the critical mass phenomenon) are not conclusive and even controversial. But it has been agreed that further investigations are warranted. The topic of Session VI in the Ecloud'02 workshop is ''Discussions of future studies, collaborations and possible solutions.'' Half of the session is devoted to presentations, another half to discussions. This report will focus on the latter. There are six presentations: (1) R. Macek, Possible cures to the e-cloud problem; (2) G. Rumolo, Driving the electron-cloud instability by an electron cooler; (3) U. Iriso Ariz, RF test benches for electron-cloud studies; (4) F. Caspers, Stealth clearing electrodes; (5) F. Ruggiero, Future electron-cloud studies at CERN; and (6) E. Perevedentsev, Beam-beam and transverse impedance model.
Date: August 19, 2002
Creator: Chou, Weiren; BrĂ¼ning, O.; Metral, E. & Giovannozzi, M.
Partner: UNT Libraries Government Documents Department

Relationship between k{sub eff} and the fraction of critical mass

Description: It is not universally understood that k{sub eff} and fractional critical mass are related in a non linear fashion. For example, a neutronic system with a k{sub eff} = 0. 95 is NOT at 95% of its critical mass. What is striking is just how non-linear the relationship between k{sub eff} and critical mass really is. This relationship is investigated and documented below for both unfavorable (i.e., very reactive) and favorable (less reactive) geometries. The implications of this non-linearity for criticality safety regulation will also be discussed.
Date: May 1, 1997
Creator: O`Dell, R.D. & Parsons, D.K.
Partner: UNT Libraries Government Documents Department

Fundamental-mode sources in approach-to-critical experiments

Description: The 1/M method is commonly used in approach-to-critical experiments to ensure criticality safety. Ideally, a plot of 1/M versus amount of nuclear material or separation distance will be linear. However, the result is usually a curve. If the curve is concave up it is said to be conservative, since the critical mass is underestimated. However, it is possible for the curve to be non-conservative and overestimate the critical mass. This paper discusses one of the factors contributing to the shape of the 1/M curve and how it can be predicted and measured. Two source distributions, producing the same number of spontaneous fission neutrons, will not necessarily contribute equally towards the multiplication of a given system. For this reason equally sized units added during an approach-to-critical will have different effects on the multiplication of the system. A method of denoting the relative importance of source distributions is needed. One method is to compare any given source distribution to its equivalent fundamental-mode source distribution. An equivalent fundamental-mode source is an imaginary source distributed identically in space, energy, and angle to the fundamental-mode fission source that would produce the same neutron multiplication as the given source distribution. A factor, denoted as g* and defined as the ratio of the fixed-source multiplication to the fundamental-mode multiplication, is used to relate a given source strength to its equivalent fundamental-mode source strength (Spriggs, et al., 1999).
Date: May 1, 2000
Creator: Goda, J. & Busch, R.
Partner: UNT Libraries Government Documents Department

Analytical review of minimum critical mass values for selected uranium and plutonium materials

Description: Current subcritical limits for a number of uranium and plutonium materials (metals and compounds) as given in the ANSI/ANS standards for criticality safety are based on evaluations performed in the late 1970s and early 1980s. This paper presents the results of an analytical study of the minimum critical mass values for a set of materials using current codes and standard cross section sets. This work is meant to produce a consistent set of minimum critical mass values that can form the basis for adding new materials to the single-parameter tables in ANSI/ANS-8.1. Minimum critical mass results are presented for bare and water reflected full-density spheres and for full density moist (1.5 wt-% water) as calculated with KENO-Va, MCNP4A and ONEDANT. Calculations were also performed for both dry and moist materials at one-half density. Some KENO calculations were repeated using several cross section sets to examine potential bias differences. The results of the calculations were compared to the currently accepted subcritical limits. The calculated minimum critical mass values are reasonably consistent for the three codes, and differences most likely reflect differences in the cross section sets. The results are also consistent with values given in ANSI/ANS-8.1. 3 refs., 2 tabs.
Date: September 1, 1997
Creator: Morman, J.A.; Henrikson, D.J. & Garcia, A.S.
Partner: UNT Libraries Government Documents Department

Critical mass study of 231 process tanks

Description: An estimated minimum critical mass for each of the process vessels in the 231 Building has been calculated on the basis of critical mass data given in the P-11 Project Document HW-24514. The calculations are made assuming the plutonium to be a homogeneous mixture of precipitate and water with some slight neutron poisoning due to other elements. The precipitate is further assumed to have partially settled making an effectively infinite water reflector above the plutonium and hence reducing the critical mass.
Date: August 19, 1952
Creator: Lanning, D.D.
Partner: UNT Libraries Government Documents Department

Recuplex nuclear safety equipment revisions

Description: A number of equipment revisions have been recommended by the Engineering Department for conversion of Recuplex to a manufacturing facility. These revisions include three items affecting the critical mass safety of the solvent extraction system: replacement of the bottom disengagement section of the H-3 stripping column with an always safe unit; replacement of the H-9 and H-10 intercolumn, organic phase surge tanks with always safe tanks; and replacement of the colorimetric plutonium monitors in the aqueous and organic raffinate streams with units insensitive to stream contaminants. This memorandum is intended to clarify the needs for these equipment revisions in achieving a safe and flexible operating system and to indicate the relative effects of revising each of the various equipment pieces separately. The general bases for the present criticality control measures in the solvent extraction system are reviewed briefly prior to discussion of the individual revisions.
Date: May 16, 1956
Creator: Judson, B.F.
Partner: UNT Libraries Government Documents Department


Description: This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.
Date: October 3, 2007
Partner: UNT Libraries Government Documents Department


Description: Five sets of benchmark experiments are reviewed herein that cover a diverse set of fissile system configurations. The review specifically focused on the change in critical mass of these systems at elevated temperatures and the temperature reactivity coefficient ({alpha}{sub T}) on the system. Because plutonium-based critical benchmark experiments at varying temperatures were not found at the time this review was prepared, only uranium-based systems are included, as follows: (1) HEU-SOL-THERM-010 - UO{sub 2}F{sub 2} solutions with high U{sup 235} enrichment; (2) HEU-COMP-THERM-016 - uranium-graphite blocks with low U concentration; (3) LEU-COMP-THERM-032 - water moderated lattices of UO{sub 2} with stainless steel cladding, and intermediate U{sup 235} enrichment; (4) IEU-COMP-THERM-002 - water moderated lattices of annular UO{sub 2} with/without absorbers, and intermediate U{sup 235} enrichment; and (5) LEU-COMP-THERM-026 - water moderated lattices of UO{sub 2} at different pitches, and low U{sup 235} enrichment. In three of the five benchmarks (1, 3 and 5), modeling of the critical system at room temperature is conservative compared to modeling the system at elevated temperatures, i.e., a greater fissile mass is required at elevated temperature. In one benchmark (4), there was no difference in the fissile mass between the room temperature system and the system at the examined elevated temperature. In benchmark (2), the system clearly had a negative temperature reactivity coefficient. Some of the high temperature benchmark experiments were treated with appropriate (and comprehensive) adjustments to the cross section sets and thermal expansion coefficients, while other experiments were treated with partial adjustments. Regardless of the temperature treatment, modeling the systems at room temperature was found to be conservative for the examined systems, i.e., a smaller critical mass was obtained. While the five benchmarks presented herein demonstrate that, for the conditions examined, modeling of the systems at room temperature is conservative as compared to modeling ...
Date: June 10, 2009
Creator: Yates, K.
Partner: UNT Libraries Government Documents Department

An updated nuclear criticality slide rule

Description: This Volume 2 contains the functional version of the updated nuclear criticality slide rule (more accurately, sliding graphs) that is referenced in An Updated Nuclear Criticality Slide Rule: Technical Basis, NUREG/CR-6504, Vol. 1 (ORNL/TM-13322/V1). This functional slide rule provides a readily usable {open_quotes}in-hand{close_quotes} method for estimating pertinent nuclear criticality accident information from sliding graphs, thereby permitting (1) the rapid estimation of pertinent criticality accident information without laborious or sophisticated calculations in a nuclear criticality emergency situation, (2) the appraisal of potential fission yields and external personnel radiation exposures for facility safety analyses, and (3) a technical basis for emergency preparedness and training programs at nonreactor nuclear facilities. The slide rule permits the estimation of neutron and gamma dose rates and integrated doses based upon estimated fission yields, distance from the fission source, and time-after criticality accidents for five different critical systems. Another sliding graph permits the estimation of critical solution fission yields based upon fissile material concentration, critical vessel geometry, and solution addition rate. Another graph provides neutron and gamma dose-reduction factors for water, steel, and concrete. Graphs from historic documents are provided as references for estimating critical parameters of various fissile material systems. Conversion factors for various English and metric units are provided for quick reference.
Date: April 1, 1998
Creator: Hopper, C. M. & Broadhead, B. L.
Partner: UNT Libraries Government Documents Department

Criticality safety aspects of K-25 Building uranium deposit removal

Description: The K-25 Building of the Oak Ridge Gaseous Diffusion Plant (now the K-25 Site) went into operation during World War II as the first large scale production plant to separate {sup 235}U from uranium by the gaseous diffusion process. It operated successfully until 1964, when it was placed in a stand-by mode. The Department of Energy has initiated a decontamination and decommissioning program. The primary objective of the Deposit Removal (DR) Project is to improve the nuclear criticality safety of the K-25 Building by removing enriched uranium deposits from unfavorable-geometry process equipment to below minimum critical mass. The method utilized to accomplish this are detailed in this report.
Date: December 31, 1995
Creator: Haire, M.J.; Jordan, W.C.; Ingram, J.C. III & Stinnet, E.C. Jr.
Partner: UNT Libraries Government Documents Department

Critical mass studies of plutonium solutions

Description: The chain reacting conditions for plutonium nitrate in water solution have been examined experimentally for a variety of sizes of spheres and cylinders. The effects on the critical mass of the displacement of hydrogen and the addition of poisons to the fuel were measured in water tamped and bare reactors. In this report the data obtained in the investigation is presented graphically and in tables. Some preliminary analysis has been made yielding the results: (i) the absorption cross-section of Pu{sup 240} is 925 {plus_minus} 200 barns and (ii) the minimum critical mass of Pu{sup 239} in water is 510 grams at concentration of about 33 grams per liter.
Date: May 19, 1952
Creator: Kruesi, F.E.; Erkman, J.O. & Lanning, D.D.
Partner: UNT Libraries Government Documents Department

Critical mass information applied to purex and recuplex design

Description: Some time ago, a series of experiments (the P-11 project) were conducted to determine the critical mass of plutonium in variously sized and shaped vessels and with various solution concentrations. These experiments were rather general in nature, hence, it is necessary to interpret the data to the specific critical mass problems of interest in separation processes. The design of new continuous flow separation processes calls for even further extrapolations of these data to vessel geometries far from the range of present experimental knowledge. The purpose of this report is to review for reference the estimates used in the design of the critically safe portions of Purex and Recuplex. This report is compiled for engineering use in approximate design; however, any design of vessels involving criticality hazards will be reviewed by the Critical Mass Group.
Date: April 1, 1953
Creator: Lanning, D.D.
Partner: UNT Libraries Government Documents Department

Critical mass calculations for the recuplex installation

Description: The methods of an analysis of the critical safety of process tanks in the Recuplex installation are discussed and results of the analysis are tabulated in this report. A minimum critical condition for a thermal chain reaction is estimated for 0-200 MWD/T Pu and for 400 MWD/T Pu for each tank in the installation vhich normally contains, or could contain, plutonium. All estimates are based on experimental critical mass data from the P-11 project and from Oak Ridge critical mass experiments.
Date: May 20, 1954
Creator: Raftery, R. P.
Partner: UNT Libraries Government Documents Department

Entropy of near-extremal black holes in AdS5

Description: We construct the microstates of near-extremal black holes in AdS_5 x S5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS_3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS_2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.
Date: July 24, 2007
Creator: Simon, Joan; Balasubramanian, Vijay; de Boer, Jan; Jejjala, Vishnu & Simon, Joan
Partner: UNT Libraries Government Documents Department


Description: With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. ...
Date: July 18, 2006
Creator: TOFFER, H.
Partner: UNT Libraries Government Documents Department

Critical Parameters of Complex Geometry Intersecting Cylinders Containing Uranyl Nitrate Solution

Description: About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a "tree") having long, thin arms (or "branches") extending up to four directions off the column. Arms are equally spaced from one another in vertical planes; and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves when each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.
Date: June 1, 1999
Creator: Rothe, Robert Emil & Briggs, Joseph Blair
Partner: UNT Libraries Government Documents Department

Critical masses of uranium diluted with matrix material

Description: Critical masses of square-prisms of highly enriched uranium diluted in various X/235U ratios with matrix material and polyethylene were measured. The Configuration cores were 22.86-cm and 45.72-cm square and were reflected with 8.1 3-cm and 10.1 6-cm thick side polyethylene reflectors, respectively. The configurations had 10.1 6-cm thick top and bottom polyethylene reflectors. For some configurations, the Rossi-a, which is an eigenvalue value characteristic for a particular configuration, was measured to establish a reactivity scale based on the degree of subcriticality . Finally, the critical mass experiments are compared with values calculated with MCNP and ENDF/B-VI cross-sections.
Date: January 1, 2002
Creator: Sanchez, R. G. (Rene G.); Loaiza, D. J. (David J.) & Kimpland, R. H. (Robert H.)
Partner: UNT Libraries Government Documents Department


Description: In 1974, a small innocuous document was submitted to the American Nuclear Society's Criticality Safety Division for publication that would have lasting impacts on this nuclear field The author was Duane Clayton, manager of the Battelle Pacific Northwest National Laboratory's Critical Mass Lab, the world's preeminent reactor critical experimenter with plutonium solutions. The document was entitled, 'Anomalies of Criticality'. 'Anomalies...' was a compilation of more than thirty separate and distinct examples of departures from what might be commonly expected in the field of nuclear criticality. Mr. Clayton's publication was the derivative of more than ten thousand experiments and countless analytical studies conducted world-wide on every conceivable reactor system imaginable: from fissile bearing solutions to solids, blocks to arrays of fuel rods, low-enriched uranium oxide systems to pure plutonium and highly enriched uranium systems. After publication, the document was commonly used within the nuclear fuel cycle and reactor community to train potential criticality/reactor analysts, experimenters and fuel handlers on important things for consideration when designing systems with critically 'safe' parameters in mind The purpose of this paper is to re-introduce 'Anomalies of Criticality' to the current Criticality Safety community and to add new 'anomalies' to the existing compendium. By so doing, it is the authors' hope that a new generation of nuclear workers and criticality engineers will benefit from its content and might continue to build upon this work in support of the nuclear renaissance that is about to occur.
Date: September 9, 2009
Creator: Puigh, R. J.
Partner: UNT Libraries Government Documents Department

Critical Concentration Of Uranium Solution

Description: The experiments with U(37)O{sub 2}F{sub 2} aqueous solution followed the series of experiments with {sup 233}UO{sub 2}(NO{sub 3}){sub 2} and U(93)O{sub 2}(NO{sub 3}){sub 2} solutions in the 69.2-cm-diam sphere. The critical concentrations of {sup 233}U and {sup 235}U were used to evaluate the ratio of {ovr {eta}{sigma}{sub a}}(233)/{ovr {eta}{sigma}{sub a}}(235) some years ago when the accepted value of {ovr {eta}}(233) was questioned. The purpose of the experiment reported here was to measure the increase in {sup 235}U critical concentration and, hence, the increase in critical mass due to the increase in the {sup 238}U content in the 69.2-cm-diam sphere. The U(37)O{sub 2}F{sub 2} concentration in an aqueous solution was adjusted to that when an aluminum spherical vessel was completely filled and the multiplication factor was greater than unity and the excess reactivity was measured by means of a positive reactor period. The critical conditions are summarized in Table 1. The critical conditions for U(93)O{sub 2}(NO{sub 3}){sub 2} solution in the same sphere are also given for comparison and there is only a small difference in the critical {sup 235}U density or mass. In these well moderated solutions there is only a small amount of neutron absorption in {sup 238}U. A comparison of the calculated multiplication factors using the DSN and ANISN transport codes with different Hansen-Roach 16-group cross-section sets is presented in Table 2. The calculated value of 1.0005 is to be compared to the experimental value of 1.0011.
Date: November 3, 1973
Creator: Magnuson, D. W.
Partner: UNT Libraries Government Documents Department