104 Matching Results

Search Results

Advanced search parameters have been applied.

Stifling of Crevice Corrosion in Alloy 22

Description: Artificially creviced Alloy 22 (N06022) specimens may be susceptible to crevice corrosion in presence of hot chloride containing solutions. The presence of oxyanions in the electrolyte, especially nitrate, may inhibit the nucleation and growth of crevice corrosion. Constant potential tests were performed using tightly creviced specimens of Alloy 22. It was found that crevice corrosion may initiate when a constant potential above the crevice repassivation potential is applied. It was found that as the crevice corrosion nucleated, the current initially increased but later decreased. The net measured current can be converted into penetration following a power law fit of the experimental data. The average power law coefficient ''n'' was found to be 0.439, suggesting that even under constant applied potential crevice corrosion penetration is diffusion controlled.
Date: June 8, 2005
Creator: Mon, K G; Gordon, G M & Rebak, R B
Partner: UNT Libraries Government Documents Department

Measuring the Repassivation Potential of Alloy 22 Using the Potentiodynamic - Galvanostatic - Potentiostatic Method

Description: Traditionally, the susceptibility of Alloy 22 (N06022) to suffer crevice corrosion has been measured using the Cyclic Potentiodynamic Polarization (CPP) technique (ASTM G 61). When the alloy is not very susceptible to crevice corrosion, the values of repassivation potential obtained using the CPP technique are not highly reproducible. To circumvent the large uncertainty in the values of the repassivation potential by the CPP method, the repassivation potential of Alloy 22 may be measured using a slower method that combines sequentially potentiodynamic, galvanostatic and potentiostatic treatments (this method is called the Tsujikawa-Hisamatsu Electrochemical or THE method). In the THE method the anodic charge is applied to the specimen in a more controlled manner, which avoids driving the alloy to transpassivity and therefore results in more reproducible repassivation potential values. Results using THE method under various testing conditions are presented. A new standard has been prepared for ASTM balloting for the THE method. The round robin matrix results are also discussed.
Date: April 27, 2007
Creator: Evans, K J & Rebak, R B
Partner: UNT Libraries Government Documents Department

Comparison of Electrochemical Methods to Determine Crevice Corrosion Repassivation Potential of Alloy 22 in Chloride Solutions

Description: Alloy 22 (N06022) is a nickel-based alloy highly resistant to corrosion. In some aggressive conditions of high chloride concentration, temperature and applied potential, Alloy 22 may suffer crevice corrosion, a form of localized corrosion. There are several electrochemical methods that can be used to determine localized corrosion in metallic alloys. One of the most popular for rapid screening is the cyclic potentiodynamic polarization (CPP). This work compares the repassivation potentials obtained using CPP to related repassivation potential values obtained using the Tsujikawa-Hisamatsu Electrochemical (THE) method and the potentiostatic (POT) method. Studied variables included temperature and chloride concentration. The temperature was varied from 30 C and 120 C and the chloride concentration was varied between 0.0005 M to 4 M. Results show that similar repassivation potentials were obtained for Alloy 22 using CPP and THE methods. Generally, under more aggressive conditions, the repassivation potentials were more conservative using the CPP method. POT tests confirmed the validity of the repassivation potential as a threshold below which localized corrosion does not nucleate. The mode of attack in the tested specimens varied depending if the test method was CPP or THE; however, the repassivation potential remained the same.
Date: August 23, 2004
Creator: Evans, K.; Yilmaz, A.; Day, S.; Wong, L. & Estill, J.
Partner: UNT Libraries Government Documents Department

Role of Metastable Pitting in Crevices on Crevice Stabilization in Alloys 625 and 22

Description: The metastable pitting behavior inside crevices of alloys 625 and 22 was examined to obtain insight into differences in crevice corrosion susceptibility between alloys 625 and 22. Metastable corrosion event rates recorded as current-time transients were found to increase with increasing applied potential and temperature for both alloys. However, the increase was more significant for 625 as compared to alloy 22 and the cumulative number of events was greater. A strong correlation was obtained between the increase in event rates and decrease in crevice stabilization potential with temperature. Metastable peak heights, values for peak integrated charge, and current/pit depth (I/r) ratios were not strongly affected by these driving forces. The alloying content in alloy 22, traced to increased molybdenum (Mo) and tungsten (W), was rationalized to decrease the metastable event rate and hence, the cumulative number of events after a given time. However, metastable peak heights, values for peak integrated charge, and I/r ratios, as well as metastable peak shapes associated with individual events, were not strongly affected by alloy type in the narrow range of Mo contents explored here. Observed differences in resistance to crevice corrosion stabilization are rationalized to depend on differences in the cumulative number of metastable events occurring sufficiently close in space and time to contribute to the development of a critical crevice chemistry at specific depths in a crevice. The properties of individual events did not have a significant effect. Stable crevice corrosion eventually occurred at the sites where a row of metastable pits formed at a critical distance from the crevice mouth. This row of pit sites focused acidification, which contributed to local depassivation.
Date: January 11, 2005
Creator: Kehler, B.A. & Scully, J.R.
Partner: UNT Libraries Government Documents Department

Determination of the Crevice Repassivation Potential of Alloy 22 By a Potentiodynamic-Galvanostatic-Potentiostatic Method

Description: Alloy 22 (N06022) is a nickel-based alloy highly resistant to corrosion. In some aggressive conditions of high chloride concentration, temperature and applied potential, Alloy 22 may suffer crevice corrosion, a form of localized corrosion. There are several electrochemical methods that can be used to determine localized corrosion in metallic alloys. One of the most popular for rapid screening is the cyclic potentiodynamic polarization (CPP). This work compares the results obtained by measuring the localized corrosion resistance of Alloy 22 using both CPP and the more cumbersome Tsujikawa-Hisamatsu Electrochemical (THE) method. The electrolytes used were 1 M NaCl and 5 M CaCl{sub 2}, both at 90 C. Results show that similar repassivation potentials were obtained for Alloy 22 using both methods. That is, in cases where localized corrosion is observed using the fast CPP method, there is no need to use THE method since it takes ten times longer to obtain comparable results in spite of the mode of corrosion attack is different in the tested specimens.
Date: June 2004
Creator: Evans, K.; Wong, L. & Rebak, R.
Partner: UNT Libraries Government Documents Department

STIFLING OF CREVICE CORROSION IN ALLOY 22

Description: Artificially creviced Alloy 22 (N06022) specimens may be susceptible to crevice corrosion in presence of hot chloride containing solutions. The presence of oxyanions in the electrolyte, especially nitrate, may inhibit the nucleation and growth of crevice corrosion. Constant potential tests were performed using tightly creviced specimens of Alloy 22. It was found that crevice corrosion may initiate when a constant potential above the crevice repassivation potential is applied. It was found that as the crevice corrosion nucleated, the current initially increased but later decreased. The net measured current can be converted into penetration following a power law fit of the experimental data. The average power law coefficient ''n'' was found to be 0.439, suggesting that even under constant applied potential, crevice corrosion penetration is diffusion controlled.
Date: July 1, 2005
Creator: Mon, K.G.; Gordon, G.M. & Rebak, R.B.
Partner: UNT Libraries Government Documents Department

Electrostatic Modeling of Vacuum Insulator Triple Junctions

Description: A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75 C and at 90 C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions.
Date: August 13, 2007
Creator: Tully, L. K.; White, A. D.; Goerz, D. A.; Javedani, J. B. & Houck, T. L.
Partner: UNT Libraries Government Documents Department

Aspects of two corrosion processes relevant to military hardware

Description: Corrosion is a leading material degradation mode observed in many military systems. This report contains a description of a small project that was performed to allow some of the important electrochemical aspects of two distinct and potentially relevant degradation modes to be better understood: environmentally assisted cracking (EAC) of aluminum alloys and corrosion in moist salt. Two specific and respective tasks were completed: (A) the characterization of the effect of aluminum microstructural variability on its susceptibility to EAC, and (B) the development of experimental and analytical techniques that can be used to identify the factors and processes that influence the corrosivity of moist salt mixtures. The resultant information constitutes part of the basis needed to ultimately predict component reliability and/or possibly to identify techniques that could be used to control corrosion in critical components. In Task A, a physical model and related understanding for the relevant degradation processes were formulated. The primary result from Task B included the identification and qualitative validation of a methodology for determining the corrosivity of salt mixtures. A detailed compilation of the results obtained from each of these two diverse tasks is presented separately in the body of this report.
Date: November 1, 1997
Creator: Braithwaite, J.W. & Buchheit, R.G.
Partner: UNT Libraries Government Documents Department

Galvanic corrosion-effect of environmental and experimental variables

Description: Galvanic corrosion behavior of A 516 steel coupled to alloy C-22 and Ti Gr-12, respectively was evaluated in an acidic brine (pH {approx} 2.75) at 30 C, 60 C and 80 C using zero resistance ammeter method. A limited number of experiments were also performed in a neutral brine involving A 516 steel/alloy C-22 couple. The steady-state galvanic current and galvanic potential were measured as functions of anode-to-cathode (A/C) area ratio and electrode distance. Results indicate that the galvanic current was gradually reduced as the A/C area ratio was increased. No systematic trend on the effect of A/C area ratio on the galvanic potential was observed. Also, no significant effect of electrode distance on the galvanic current and galvanic potential was evident. In general, increased galvanic current was noticed with increasing temperature. The limited data obtained in the neutral brine indicate that the galvanic current was reduced in this environment, compared to that in the acidic brine. Optical microscopic examination was performed on all tested specimens to evaluate the extent of surface damage resulting from galvanic interaction. A 516 steel suffered from general corrosion and crevice corrosion in all environments tested. Very light crevice corrosion mark was observed with alloy C-22 and Ti Gr-12 in the acidic brine at 60 C and 80 C. However, this mark appears to be a surface discoloration and no actual crevice was detected.
Date: November 1, 1998
Creator: Fleming, D L; Lum, B Y & Roy, A K
Partner: UNT Libraries Government Documents Department

General and localized corrosion of the drip shield

Description: Ti Gr 7 is an extremely corrosion resistant material, with a very stable passive film. Based upon exposures in the LTCTF, it has been determined that the general corrosion and oxidation rates of Ti Gr 7 are essentially below the level of detection. In any event, over the 10,000 year life of the repository, general corrosion and oxidation should not be life limiting. The large separation between measured corrosion and threshold potentials indicate that localized breakdown of the passive film is unlikely under plausible conditions, even in SSW at 120 C. In the future, the pH and current in crevices formed from Ti Gr 7 should be determined experimentally. With exposures of two years, no significant evidence of crevice corrosion has been observed with Ti Gr 16 in SDW, SCW, and SAW at temperatures up to 9O C, though many of the samples have a beautiful green patina. An abstracted model has been presented, with parameters determined experimentally, that should enable performance assessment to account for the general and localized corrosion of this material. A feature of this model is the use of the materials specification to limit the range of corrosion and threshold potentials, thereby making sure that substandard materials prone to localized attack are avoided.
Date: August 20, 1999
Creator: Estill, J C; Farmer, J C; McCright & D, R
Partner: UNT Libraries Government Documents Department

Inhibition of Chloride Induced Crevice Corrosion in Alloy 22 by Fluoride Ions

Description: Alloy 22 (N06022) is highly resistant to localized corrosion. Alloy 22 may be susceptible to crevice corrosion in pure chloride (Cl{sup -}) solutions under aggressive environmental conditions. The effect of the fluoride (F{sup -}) over the crevice corrosion induced by chloride ions is still not well established. The objective of the present work was to explore the crevice corrosion resistance of this alloy to different mixtures of fluorides and chlorides. Cyclic potentiodynamic polarization (CPP) tests were conducted in deaerated aqueous solutions of pure halide ions and also in different mixtures of chloride and fluoride at 90 C and pH 6. The range of chloride concentration [Cl{sup -}] was 0.001 M {le} [Cl{sup -}] {le} 1 M and the range of molar fluoride to chloride ratio [F{sup -}]/[Cl{sup -}] was 0.1 {le} [F{sup -}]/[Cl{sup -}] {le} 10. Results showed that Alloy 22 was susceptible to crevice corrosion in all the pure chloride solutions but not in the pure fluoride solutions. Fluoride ions showed an inhibitor behavior only in mixtures with a molar ratio [F{sup -}]/[Cl{sup -}] > 2. For mixtures with a molar ratio [F{sup -}]/[Cl{sup -}] of 7 and 10 the inhibition of crevice corrosion was complete.
Date: October 9, 2005
Creator: Carranza, R M; Rodr?guez, M A & Rebak, R B
Partner: UNT Libraries Government Documents Department

Experimental Evaluation of Tude Support Plate Crevice Chemistry

Description: A test methodology for measuring temperature, impedance, pH, and electrochemical potential distributions within a sludge-packed tube support plate crevice in a laboratory test is described. The method successfully showed that there were large concentration gradients between the tube and tube support plate sides of the crevice. The testing also showed that strong bases concentrated more effectively than strong acids, and that the crevice pH, when exposed to seawater-based solutions, increased with increasing superheat and decreasing bulk concentration. The large variations in the crevice chemistry observed under heat transfer were eliminated upon shutdown. These new test data suggest that it might be beneficial to evaluate the variation in the extent of stress corrosion cracking with tube support plate elevation found in some steam generators in light of local chemistry changes, as well as the variation in tubing temperature. Because of the large crevice chemistry gradients during boiling heat transfer and their subsequent homogenization upon test shutdown, the results suggest reassessing the use of hideout return measurements and tube deposit analyses in industry to infer the crevice chemistry under heat transfer conditions.
Date: May 8, 2001
Creator: Baum, Allen
Partner: UNT Libraries Government Documents Department

Modeling the Effects of Crevice Former, Particulates , and the Evolving Surface Profile in Crevice Corrosion

Description: Crevice corrosion may initiate in confined regions due to transport limitations, followed by an accumulation of a highly corrosive chemistry, capable of dissolving the metal. The metal and the crevice former surface roughness, the presence of particulates under the crevice former and the accumulation of solid corrosion products at the corroding site would significantly affect the current and potential distribution at the anode by increasing the ohmic potential drop. Most crevice corrosion models focus on a smooth walled crevice of uniform gap and do not account for the changing profile after crevice corrosion has been initiated. In this work we analyze the crevice (anodic) region and apply current and potential distribution models to examine the effects of the perturbed surface topography. The analysis focuses on three related issues: (1) the effects of surface roughness of the metal and the crevice former, (2) the effects of particulates under the crevice former, and (3) the evolution of the crevice profile with corrosion product accumulation at the active, anodic region.
Date: December 21, 2006
Creator: Agarwal, A.S.; Landau, U.; Shan, X. & Payer, J.H.
Partner: UNT Libraries Government Documents Department

Crevice Corrosion Initiation at Engineered Cu-Rich Defects in Al Thin Films

Description: Engineered Cu-rich islands were fabricated on an Al thin film to investigate pit initiation mechanisms at noble particles. X-ray photoelectron spectroscopy confirms that the thin film Cu-rich islands interdiffuse with the underlying Al substrate to form Al{sub 2}Cu islands. The defect arrays exhibit open circuit potential fluctuations whose magnitude and frequency increase as defect spacing decreases for constant island size and cathode/anode ratio. Post-exposure examination by energy dispersive spectroscopy (EDS) shows that the Al beneath the Cu-rich island dissolves with a crevice geometry. Engineered Al islands fabricated under identical conditions do not induce crevice corrosion in the vicinity of the Al defects. These results suggest that the Al dissolution is driven by the galvanic coupling between the noble island and matrix, and/or by a local change in chemistry, rather than by the presence of a defective oxide in the vicinity of the island.
Date: October 14, 1999
Creator: BARBOUR,J. CHARLES; BUCHHEIT,R.G.; COPELAND,ROBERT GUILD; ISAACS,H.S.; JEFFCOATE,C.S.; MARTINEZ,MICHAEL A. et al.
Partner: UNT Libraries Government Documents Department

The effect of chromate concentration on the repassivation of corroding aluminum

Description: Current density maps of anodically polarized pure aluminum in chloride solutions were measured and the effect of chromate/dichromate buffer additions monitored. The higher the polarized potential the more chromate was required to repassivate the corroding surface. Small pits repassivated easily, crevice corrosion events were the last to repassivate. Open circuit potential measurements showed the presence of meta-stable pitting at chloride concentrations of 0.3M. The lifetime and magnitude of these metastable pits was reduced on the addition of 0.05M chromate buffer.
Date: February 9, 1999
Creator: Jeffcoate, C.S.; Isaacs, H.S.; Hawkins, J. & Thompson, G.E.
Partner: UNT Libraries Government Documents Department

EFFECT OF CREVICE FORMER ON CORROSION DAMAGE PROPAGATION

Description: The objectives of this report are: (1) To determine the effect of the crevice former on the localized corrosion damage propagation; (2) FOCUS on post initiation stage, crevice propagation and arrest processes; (3) Determine the evolution of damage--severity, shape, location/distribution, damage profile; and (4) Model of crevice corrosion propagation, i.e. the evolution of the crevice corrosion damage profile.
Date: March 1, 2006
Creator: Payer, J.H.; Landau, U.; Shan, X. & Agarwal, A.S.
Partner: UNT Libraries Government Documents Department

Examination of Corrosion Products and the Alloy Surface After Crevice Corrosion of a Ni-Cr-Mo- Alloy

Description: The objective of this study is to investigate the composition of corrosion products and the metal surface within a crevice after localized corrosion. The analysis provides insight into the propagation, stifling and arrest processes for crevice corrosion and is part of a program to analyze the evolution of localized corrosion damage over long periods of time, i.e. 10,000 years and longer. The approach is to force the initiation of crevice corrosion by applying anodic polarization to a multiple crevice assembly (MCA). Results are reported here for alloy C-22, a Ni-Cr-Mo alloy, exposed to a high temperature, concentrated chloride solution. Controlled crevice corrosion tests were performed on C-22 under highly aggressive, accelerated condition, i.e. 4M NaCl, 100 C and anodic polarization to -0.15V-SCE. The crevice contacts were by either a polymer tape (PTFE) compressed by a ceramic former or by a polymer (PTFE) crevice former. Figure 1 shows the polarization current during a crevice corrosion test. After an incubation period, several initiation-stifle-arrest events were indicated. The low current at the end of the test indicated that the metal surface had repassivated.
Date: June 9, 2006
Creator: Shan, X. & Payer, J.H.
Partner: UNT Libraries Government Documents Department

Crevice corrosion and pitting of high-level waste containers: a first step towards the integration of deterministic and probabilistic models

Description: An integrated predictive model is being developed to account for the effects of localized environmental conditions in crevices on pit initiation and propagation. A deterministic calculation is used to estimate the accumulation of hydrogen ions in the crevice solution due to equilibrium hydrolysis reactions of dissolved metal. Pit initiation and growth within the crevice is dealt with by either a stochastic probability model, or an equivalent deterministic model. While the strategy presented here is very promising, the integrated model is not yet ready for accurate quantitative predictions. Empirical expressions for the rate of penetration based upon experimental crevice corrosion data should be used in the interim period, until the integrated model can be refined. Both approaches are discussed.
Date: July 1, 1997
Creator: Farmer, J. C., LLNL
Partner: UNT Libraries Government Documents Department

Crevice Repassivation Potentials for Alloy 22 in Simulated Concentrated Ground Waters

Description: The resistance of Alloy 22 (N06022) to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. However, the behavior of Alloy 22 in concentrated aqueous solutions that may simulate concentrated ground waters was not fully understood. Systematic electrochemical tests using cyclic potentiodynamic polarization as well as the Tsujikawa-Hisamatsu electrochemical method were performed to determine the crevice corrosion susceptibility of Alloy 22 in simulated concentrated water (SCW), simulated acidified water (SAW) and basic saturated water (BSW). Results show that Alloy 22 is immune to crevice corrosion in SCW and SAW but may suffer crevice corrosion initiation in BSW. Results also show that in a naturally aerated environment, the corrosion potential would never reach the critical potential for crevice corrosion initiation.
Date: November 8, 2006
Creator: Rebak, R B; Evans, K J & Ilevbare, G O
Partner: UNT Libraries Government Documents Department