1,309 Matching Results

Search Results

Advanced search parameters have been applied.

Theory of Reversible and Nonreversible Cracks in Solids

Description: The Griffith crack theory is reviewed and certain shortcomings of this theory are discussed. A new description for the shape of a crack is given which takes into account the atomic structure of material. Through consideration of the total energy of the system and the shape of the crack, expressions for crack behavior are derived which are considered to remedy the defects of the Griffith theory.
Date: April 1955
Creator: Frenkel, Y. I.
Partner: UNT Libraries Government Documents Department

Effect of Fatigue Crack on Static Strength: 2014-T6, 2024-T4, 6061-T6, 7075-T6 Open-Hole Monobloc Specimens

Description: "Static tensile test results are presented for specimens of 2014-T6, 2024-T4, 6061-T6, and 7075-T6 aluminum alloy containing fatigue cracks. The results are found to be in good agreement with the results reported for similar tests from other sources. The results indicate that the presence of a fatigue crack reduced the static strength, in all cases, by an amount larger than the corresponding reduction in net area; the 6061-T6 alloy specimens were least susceptible to the crack and the 7075-T6 alloy specimens were most susceptible" (p. 1).
Date: May 1957
Creator: Nordmark, Glenn E. & Eaton, Ian D.
Partner: UNT Libraries Government Documents Department

Early Detection of Cracks Resulting From Fatigue Stressing

Description: Report discusses an apparatus that may be used for indicating the formation of fatigue cracks or for following the progress of cracks. Details of the experiment and discussion of the way in which the deflection-crack area relationship may be used to monitor fatigue cracks are included.
Date: September 1944
Creator: Bennett, John A.
Partner: UNT Libraries Government Documents Department

Status Report on Studies of Recovery Boiler Composite Floor Tube Cracking

Description: Cracking of the stainless steel layer of co-extruded 304L stainless steel/SA210 Gd A 1 carbon steel black liquor recovery boiler floor tubes has been identified as one of the most serious material problems in the pulp and paper industry. A DOE-funded study was initiated in 1995 with the goal of determining the cause of and possible solutions to this cracking problem. These studies have characterized tube cracking as well as the chemical and thermal environment and stress state of floor tubes. Investigations of possible cracking mechanisms indicate that stress corrosion cracking rather than thermal fatigue is a more likely cause of crack initiation. The cracking mechanism appears to require the presence of hydrated sodium sulfide and is most likely active during shut-downs and/or start-ups. Based on these results and operating experience, certain alloys appear to be more resistant than others to cracking in the floor environment, and certain operating practices appear to significantly lessen the likelihood of cracking. This report is the latest in a series of progress reports presented on this project.
Date: September 12, 1999
Creator: Eng, P.; Frederick, L.A.; Hoffmann, C.M.; Keiser, J.R.; Mahmood, J.; Maziasz, P.J. et al.
Partner: UNT Libraries Government Documents Department

Effects of Prior Fatigue-Stressing of the Impact Resistance of Chromium-Molybdenum Aircraft Steel

Description: Note presenting a study of the impact behavior of normalized SAE X4130 steel after a variety of repeated stress treatments. Fatigue specimens of several types were used and the effects of surface finish, rest periods, stress amplitude, mean stress, stress concentration, and temperature during repeated stress received consideration.
Date: March 1943
Creator: Kies, J. A. & Holshouser, W. L.
Partner: UNT Libraries Government Documents Department

The Cause of Welding Cracks in Aircraft Steels

Description: The discussion in this article refers to gas welding of thin-walled parts of up to about 3 mm thickness. It was proven that by restricting the sulphur, carbon, and phosphorous content, and by electric-furnace production of the steel, it was possible in a short time to remove this defect. Weld hardness - i.e., martensite formation and hardness of the overheated zone - has no connection with the tendency to weld-crack development. Si, Cr, Mo, or V content has no appreciable effect, while increased manganese content tends to reduce the crack susceptibility.
Date: October 1940
Creator: Müller, J.
Partner: UNT Libraries Government Documents Department

Effect of Crystal Orientation on Fatigue-Crack Initiation in Polycrystalline Aluminum Alloys

Description: Report presenting testing demonstrating that fatigue cracks initiate in preexisting slip bands on planes parallel to planes from tests on large-grained specimens of 1100 and 5052 aluminum alloys. The resolved shear stress on the planes in crystal where fatigue cracks had developed were compared to uncracked crystals. Results regarding the location fatigue cracks, number of stress cycles observed, and differences of the crystals observed in the two types of aluminum alloys are provided.
Date: August 1957
Creator: Weinberg, J. G. & Bennett, J. A.
Partner: UNT Libraries Government Documents Department

Some Aspects of Fail-Safe Design of Pressurized Fuselages

Description: "Separate investigations have dealt with the critical crack length of flat sheets or of unstiffened cylinders and with the type of rupture experienced by stiffened cylinders. These investigations are correlated, supplemented by new tests, and combined into a uniform scheme for predicting critical crack length and type of rupture in stiffened pressurized cylinders" (p. 1).
Date: June 1957
Creator: Kuhn, Paul & Peters, Roger W.
Partner: UNT Libraries Government Documents Department

Random polycrystals of grains containing cracks: Model ofquasistatic elastic behavior for fractured systems

Description: A model study on fractured systems was performed using aconcept that treats isotropic cracked systems as ensembles of crackedgrains by analogy to isotropic polycrystalline elastic media. Theapproach has two advantages: (a) Averaging performed is ensembleaveraging, thus avoiding the criticism legitimately leveled at mosteffective medium theories of quasistatic elastic behavior for crackedmedia based on volume concentrations of inclusions. Since crack effectsare largely independent of the volume they occupy in the composite, sucha non-volume-based method offers an appealingly simple modelingalternative. (b) The second advantage is that both polycrystals andfractured media are stiffer than might otherwise be expected, due tonatural bridging effects of the strong components. These same effectshave also often been interpreted as crack-crack screening inhigh-crack-density fractured media, but there is no inherent conflictbetween these two interpretations of this phenomenon. Results of thestudy are somewhat mixed. The spread in elastic constants observed in aset of numerical experiments is found to be very comparable to the spreadin values contained between the Reuss and Voigt bounds for thepolycrystal model. However, computed Hashin-Shtrikman bounds are much tootight to be in agreement with the numerical data, showing thatpolycrystals of cracked grains tend to violate some implicit assumptionsof the Hashin-Shtrikman bounding approach. However, the self-consistentestimates obtained for the random polycrystal model are nevertheless verygood estimators of the observed average behavior.
Date: July 8, 2006
Creator: Berryman, James G. & Grechka, Vladimir
Partner: UNT Libraries Government Documents Department

De-alloying and stress corrosion cracking. Final report, July 1, 1990--June 30, 1993

Description: Results of work on fracture properties of porous dealloyed gold structures indicates that this material undergoes a brittle-ductile transition as the size scale of the porosity increases. Aspects of the work reported on and proposed address fundamental issues related corrosion in alloy systems. De-alloyed film induce brittle fracture experiments are being performed on Ag-Au and Cu-Au alloy thin sheets. An indirect potential drop technique is being developed to measure dynamic crack motion. Preliminary work is being performed to determine optimum conditions for film thickness-crack penetration experiments.
Date: April 1, 1996
Creator: Sieradzki, K.
Partner: UNT Libraries Government Documents Department

Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces

Description: Some materials may naturally form discontinuities such as cracks as a result of deformation. As an aid to the modeling of such materials, a new framework for the basic equations of continuum mechanics, called the "peridynamic" formulation, is proposed. The propagation of linear stress waves in the new theory is discussed, and wave dispersion relations are derived. Material stability and its connection with wave propagation is investigated. It is demonstrated by an example that the reformulated approach permits the solution of fracture problems using the same equations either on or off the crack surface or crack tip. This is an advantage for modeling problems in which the location of a crack is not known in advance.
Date: October 1, 1998
Creator: Silling, S.A.
Partner: UNT Libraries Government Documents Department

Erosion of a geopolymer.

Description: Solid-particle erosion studies were conducted on a representative geopolymer. The test conditions were normal impact of 390-{micro}m angular Al{sub 2}O{sub 3} erodent particles moving at 50, 70, or 100 m/s. Steady-state erosion rates were obtained and the material-loss mechanism was studied by scanning electron microscopy. The geopolymer responded as a classic brittle material. Elastic-plastic indentation events led to formation of brittle cleavage cracks that resulted in spallation of material. The erosion rate was proportional to erodent velocity to the 2.3 power. The erosion rate and mechanism for the geopolymer were nearly identical to what has been observed for erosion of Si single crystals.
Date: July 2, 2002
Creator: Goretta, K. C.; Chen, N.; Routbort, J. L.; Lukey, G. C. & van Deventer, J. S. J.
Partner: UNT Libraries Government Documents Department


Description: A simulated HRT fuel solution was unstable when passed through a heated Zircaloy-2 bypass section installed on a Ti loop. Losses of uranyl, cupric, and nickel sulfates were observed when the temperature of the solution emerging from the bypass was as low as 290 deg C. The 0.04 m UO/sub 2/SO/sub 4/ solutions containing Please delete abstract number 7731
Date: October 31, 1959
Creator: Griess, J.C.; Savage, H.C.; Greeley, R.S.; English, J.L.; Bolt, S.E.; Hess, D.N. et al.
Partner: UNT Libraries Government Documents Department

Stress intensity factor solutions for cracks in threaded fasteners

Description: Nondimensional stress intensity factor (K) solutions for continuous circumferential cracks in threaded fasteners were calculated using finite element methods that determined the energy release rate during virtual crack extension. Assumed loading conditions included both remote tension and nut loading, whereby the effects of applying the load to the thread flank were considered. In addition, K solutions were developed for axisymmetric surface cracks in notched and smooth round bars. Results showed that the stress concentration of a thread causes a considerable increase in K for shallow cracks, but has much less effect for longer cracks. In the latter case, values of K can be accurately estimated from K solutions for axisymmetric cracks in smooth round bars. Nut loading increased K by about 50% for shallow cracks, but this effect became negligible at crack depth-to-minor diameter ratios (a/d) greater than 0.2. An evaluation of thread root acuity effects showed that root radius has no effect on K when the crack depth exceeds 2% of the minor diameter. Closed-form K solutions were developed for both remote-loading and nut-loading conditions and for a wide range of thread root radii. The K solutions obtained in this study were compared with available literature solutions for threaded fasteners as well as notched and smooth round bars.
Date: February 1, 1999
Creator: Oster, D.M. & Mills, W.J.
Partner: UNT Libraries Government Documents Department

How Tough is Human Cortical Bone? In-Situ Measurements on Realistically Short Cracks

Description: Bone is more difficult to break than to split. Although this is well known, and many studies exist on the behavior of long cracks in bone, there is a need for data on the orientation-dependent crack-growth resistance behavior of human cortical bone which accurately assesses its toughness at appropriate size-scales. Here we use in-situ mechanical testing in the scanning electron microscope and x-ray computed tomography to examine how physiologically-pertinent short (<600 mu m) cracks propagate in both the transverse and longitudinal orientations in cortical bone, using both crack-deflection/twist mechanics and nonlinear-elastic fracture mechanics to determine crack-resistance curves. We find that after only 500 mu m of cracking, the driving force for crack propagation was more than five times higher in the transverse (breaking) direction than in the longitudinal (splitting) direction due to major crack deflections/twists principally at cement sheathes. Indeed, our results show that the true transverse toughness of cortical bone is far higher than previously reported. However, the toughness in the longitudinal orientation, where cracks tend to follow the cement lines, is quite low at these small crack sizes; it is only when cracks become several millimeters in length that bridging mechanisms can develop leading to the (larger-crack) toughnesses generally quoted for bone.
Date: May 10, 2008
Creator: Ritchie, Robert O.; Koester, K. J.; Ager III, J. W. & Ritchie, R.O.
Partner: UNT Libraries Government Documents Department

Dislocation emission from a three-dimensional crack -- A large-scale molecular dynamics study

Description: A series of massively parallel molecular dynamics simulations with up to 35 million atoms is performed to investigate dislocation emission from a three-dimensional crack. The authors observe dislocation loops emitted from the crack front--the first time this has been seen in computer simulations. The sequence of dislocation emission in the process of crack blunting process strongly depends on the crystallographic orientation of the crack front and differs strikingly from anything previously conjectured. This finding is essential to establish a precise dislocation emission criterion (i.e., intrinsic ductility criterion). They also find that boundary conditions and interatomic force laws have a significant effect on jogging or blunting dislocation emission modes.
Date: December 31, 1996
Creator: Zhou, S.J.; Beazley, D.M.; Lomdahl, P.S.; Voter, A.F. & Holian, B.L.
Partner: UNT Libraries Government Documents Department

Evaluation and analysis of the performance of masonary infills during the Northridge earthquake

Description: Observations were made of the behavior of masonry infills in structural frames during the Northridge earthquake, and an analytical technique was developed for analyzing infilled frame structures. Infills near the epicenter suffered significant damage, but in several cases contributed to the seismic resistance and life safety performance. Older infill buildings in downtown Los Angeles experienced intensity of shaking similar to that expected in central/eastern United States earthquakes. The infills experienced some cracking, but otherwise complemented the lateral resistance of the weak building frames. This suggests infill frame buildings in moderate seismic zones may provide at least life safety functions without the need for expensive retrofit. A developed analytical technique was used to analyze two buildings for which the observed behavior and records from the Northridge earthquake were available. The analytical technique was based on using a piecewise linear equivalent strut for the infill. Parameters for the strut were obtained by examining the results of a wide variety of experimental infill tests. The strut method is easy to incorporate in standard linear analyses, and converges quite rapidly. The strut method was applied to two structures that had records from the Northridge earthquake. Very favorable comparisons between the analytical method and observed response were obtained. Recommendations were made concerning evaluation of the vulnerability of infills to earthquakes, and the construction of infills.
Date: February 1, 1996
Creator: Bennett, R. M.; Fischer, W. L.; Flanagan, R. D. & Tenbus, M. A.
Partner: UNT Libraries Government Documents Department

Modeling of stresses at grain boundaries with respect to occurrence of stress corrosion cracking

Description: The distributions of elastic stresses/strains in the grain boundary regions were studied by the analytical and the finite element models. The grain boundaries represent the sites where stress concentration occurs as a result of discontinuity of elastic properties across the grain boundary and the presence of second phase particles elastically different from the surrounding matrix grains. A quantitative analysis of those stresses for steels and nickel based alloys showed that the stress concentrations in the grain boundary regions are high enough to cause a local microplastic deformation even when the material is in the macroscopic elastic regime. The stress redistribution as a result of such a plastic deformation was discussed.
Date: December 31, 1995
Creator: Kozaczek, K. J.; Sinharoy, A.; Ruud, C. O. & McIlree, A. R.
Partner: UNT Libraries Government Documents Department

Linear and nonlinear methods for detecting cracks in beams

Description: This paper presents experimental results from the vibration of a polycarbonate beam containing a crack that opens and closes during vibration. Several techniques were employed to detect and locate the crack making use of the nonlinearity. ``Harmonic mode shapes`` proved to be more sensitive to damage than conventional mode shapes. Instantaneous frequency and time-frequency methods also showed clear signatures for the crack. The results indicate that nonlinearities may provide increased capabilities for structural damage detection and location.
Date: December 31, 1995
Creator: Prime, M.B. & Shevitz, D.W.
Partner: UNT Libraries Government Documents Department

Fracture assessment of weld material from a full-thickness clad RPV shell segment

Description: Fracture analysis was applied to full-thickness clad beam specimens containing shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPV) at beginning of life. The beam specimens were fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include gradients of material properties and residual stresses due to welding and cladding applications. Fracture toughness estimates were obtained from load vs load-line displacement and load vs crack-mouth-opening displacement data using finite-element methods and estimation schemes based on the {eta}-factor method. One of the beams experienced a significant amount of precleavage stable ductile tearing. Effects of precleavage tearing on estimates of fracture toughness were investigated using continuum damage models. Fracture toughness results from the clad beam specimens were compared with other deep- and shallow-crack single-edge notch bend (SENB) data generated previously from A533 Grade B plate material. Range of scatter for the clad beam data is consistent with that from the laboratory-scale SENB specimens tested at the same temperature.
Date: July 1, 1996
Creator: Keeney, J. A.; Bass, B. R. & McAfee, W. J.
Partner: UNT Libraries Government Documents Department

Void morphology in polyethylene/carbon black composites

Description: A combination of small angle neutron scattering (SANS) and contrast matching techniques is used to determine the size and quantity of voids incorporated during fabrication of polyethylene/carbon black composites. The analysis used to extract void morphology from SANS data is based on the three-phase model of microcrack determination via small angle x-rayscattering (SAXS) developed by W.Wu{sup 12} and applied to particulate reinforced composites.
Date: December 31, 1996
Creator: Marr, D.W.M.; Wartenberg, M. & Schwartz, K.B.
Partner: UNT Libraries Government Documents Department