64 Matching Results

Search Results

Advanced search parameters have been applied.

Timing Calibration in PET Using a Time Alignment Probe

Description: We evaluate the Scanwell Time Alignment Probe for performing the timing calibration for the LBNL Prostate-Specific PET Camera. We calibrate the time delay correction factors for each detector module in the camera using two methods--using the Time Alignment Probe (which measures the time difference between the probe and each detector module) and using the conventional method (which measures the timing difference between all module-module combinations in the camera). These correction factors, which are quantized in 2 ns steps, are compared on a module-by-module basis. The values are in excellent agreement--of the 80 correction factors, 62 agree exactly, 17 differ by 1 step, and 1 differs by 2 steps. We also measure on-time and off-time counting rates when the two sets of calibration factors are loaded into the camera and find that they agree within statistical error. We conclude that the performance using the Time Alignment Probe and conventional methods are equivalent.
Date: May 5, 2006
Creator: Moses, William W. & Thompson, Christopher J.
Partner: UNT Libraries Government Documents Department

YALINA-booster subcritical assembly pulsed-neutron e xperiments: detector dead time and apatial corrections.

Description: In almost every detector counting system, a minimal dead time is required to record two successive events as two separated pulses. Due to the random nature of neutron interactions in the subcritical assembly, there is always some probability that a true neutron event will not be recorded because it occurs too close to the preceding event. These losses may become rather severe for counting systems with high counting rates, and should be corrected before any utilization of the experimental data. This report examines the dead time effects for the pulsed neutron experiments of the YALINA-Booster subcritical assembly. The nonparalyzable model is utilized to correct the experimental data due to dead time. Overall, the reactivity values are increased by 0.19$ and 0.32$ after the spatial corrections for the YALINA-Booster 36% and 21% configurations respectively. The differences of the reactivities obtained with He-3 long or short detectors at the same detector channel diminish after the dead time corrections of the experimental data for the 36% YALINA-Booster configuration. In addition, better agreements between reactivities obtained from different experimental data sets are also observed after the dead time corrections for the 21% YALINA-Booster configuration.
Date: October 11, 2010
Creator: Cao, Y.; Gohar, Y. & Division, Nuclear Engineering
Partner: UNT Libraries Government Documents Department

Evaluation of production samples of the scintillators LaBr3:Ce and LaCl3:Ce

Description: We report on the evaluation of the performance of two recently developed scintillator materials, LaCl{sub 3}:Ce and LaBr{sub 3}:Ce, at the task of gamma ray spectroscopy. Their performance is compared to a standard scintillator used for gamma ray spectroscopy--a 25 mm diameter 25 mm tall cylinder of NaI:Tl. We measure the pulse height, energy resolution, and full-energy efficiency of production LaBr{sub 3}:Ce and LaCl{sub 3}:Ce scintillation crystals of different sizes and geometries for a variety of gamma-ray energies. Using production rather than specially selected crystals will establish whether immediate large-scale use is feasible. The crystal is excited by gamma rays from one of six isotopic sources ({sup 125}I, {sup 241}Am, {sup 57}Co, {sup 22}Na, {sup 137}Cs, and {sup 60}Co) placed 15 cm away from the scintillator. Our measurements show that both LaCl{sub 3} and LaBr{sub 3} outperform NaI:Tl in almost all cases. They outperform NaI:Tl at all energies for the photopeak fraction and counting rate measurements, and for energy resolution at higher energies (above 200 keV for LaCl{sub 3} and 75 keV for LaBr{sub 3}). The performance of production crystals is excellent and these scintillators should be considered for immediate use in systems where stopping power and energy resolution are crucial.
Date: September 15, 2005
Creator: Choong, Woon-Seng; Derenzo, Stephen E. & Moses, William W.
Partner: UNT Libraries Government Documents Department

Measurements of the longitudinal and transverse beam loss at the Tevatron

Description: Measurements of the transverse and longitudinal beam losses during a Tevatron store will be presented. The measurements utilize scintillation counters to monitor the nuclear interactions of the 1 TeV halo particles with a scraper that is located near the beam. If the particles are in time with the primary bunches, they are assumed to come from transverse perturbations inducing large betatron oscillations. Particles lost longitudinally drift around the ring due to synchrotron radiation and become asynchronous with respect to the bunches. A pulsed electron lens is then used to induce large betatron oscillations that extract these particles onto the scraper. The resulting nuclear interactions in the scraper are recorded by a gated scintillating counter system. The counting rates from the two channels provide an online measurement of the two types of beam loss. Known beam loss due to interactions at the IP and to nuclear collisions in the residual gas can be subtracted which then exposes the underlying losses from longitudinal and transverse instabilities.
Date: June 2, 2003
Creator: al., Alvin V. Tollestrup et
Partner: UNT Libraries Government Documents Department

Evidence of water ice near the lunar poles

Description: Lunar Prospector epithermal neutron data were studied to evaluate the probable chemical state of enhanced hydrogen, [H], reported previously to be near both lunar poles [1,2]. Improved versions of thermal and epithermal neutron data were developed for this purpose. Most important is the improved spatial resolution obtained by using shortened integration times. A new data set was created, Epi* = [Epithermal - 0.057 x Thermal], to reduce effects of composition variations other than those due to hydrogen. The Epi* counting rates are generally low near both lunar poles and high over terrane near recent impact events such as Tycho and Jackson. However, other lunar features are also associated with high Epi* rates, which represent a wide range of terrane types that seem to have little in common. If we postulate that one property all bright Epi* features do have in common is low [H], then measured Epi* counting rates appear to be quantitatively self consistent. If we assume that [H]=O above the top 98th percentile of Epi* counting rates at 2{sup o} x 2{sup o} spatial resolution, then [H]{sub ave} = 55 ppm for latitudes equatorward of [75{sup o}]. This value is close to the average found in returned lunar soil samples, [H]{sub ave} {approx} 50 ppm [3]. Using the foregoing physical interpretation of Epi* counting rates, we find that the Epi* counts within most of the large craters poleward of {+-}70{sup o} are higher, and therefore [H] is lower, than that in neighboring inter-crater plains, as shown in Figure 1. Fourteen of these craters that have areas larger than the LP epithermal spatial resolution (55 km diameter at 30 km altitude), were singled out for study. [H] is generally found to increase with decreasing distance from the poles (hence decreasing temperature). However, quantitative estimates of the diffusivity of hydrogen ...
Date: January 1, 2001
Creator: Feldman, W. C. (William C.); Maurice, S. (Sylvestre); Lawrence, David J. (David Jeffery),; Little, R. C. (Robert C.); Lawrence, S. L. (Stefanie L.); Gasnault, O. M. (Olivier M.) et al.
Partner: UNT Libraries Government Documents Department

Solar Energetic Particle Spectrum on 13 December 2006 Determined by IceTop

Description: The IceTop air shower array now under construction at the South Pole as the surface component of the IceCube neutrino telescope (Achterberg et al. 2006) detected an unusual near-solar-minimum Ground Level Enhancement (GLE) after a solar flare on 13 December 2006. Beginning at 0220 UT, the 4B class flare occurred at solar coordinates S06 W24, accompanied by strong (X3.4) X-ray emission and type II and IV radio bursts. The LASCO coronagraph on the SOHO spacecraft observed a halo CME launch from the Sun at {approx} 0225 UT with speed estimated to be {approx} 1770 km/s. We have begun (Bieber et al. 2007) a comprehensive analysis of the propagation of solar energetic particles in this event. However the focus of this Letter is the new and unique ability of IceTop to derive the energy spectrum of these particles in the multi-GeV regime from a single detector with a well defined viewing direction. When completed, IceTop will have approximately 500 square meters of ice Cherenkov collecting area arranged in an array of 80 stations on a 125 m triangular grid to detect air showers from one PeV to one EeV. Each station consists of two, two meter diameter tanks filled with ice to a depth of 90 cm. Tanks are instrumented with two Digital Optical Modules (DOM) operated at different gain settings to provide appropriate dynamic range to cover both large and small air showers. Each DOM contains a 10 inch photomultiplier and an advanced readout system capable of digitizing the full waveform. For historical reasons, the two discriminator counting rates recorded in each DOM are termed SPE (Single Photo Electron), and MPE (Multi Photo Electron). In the present analysis the SPE threshold corresponds approximately to 20 photoelectrons (PE), and the MPE threshold to 100 PE. Due to the high altitude (2835m) ...
Date: October 11, 2008
Creator: Collaboration, IceCube & Klein, Spencer
Partner: UNT Libraries Government Documents Department

Beam emittance measurements in RHIC

Description: The RHIC proton polarimeters can operate in scanning mode, giving polarization profiles and transverse beam intensity profile (beam emittance) measurements. The polarimeters function as wire scanners, providing a very good signal/noise ratio and high counting rate. This allows accurate bunch-by-bunch emittance measurements during fast target sweeps (<1 s) through the beam. Very thin carbon strip targets make these measurements practically non-destructive. Bunch by bunch emittance measurements are a powerful tool for machine set-up; in RHIC, individual proton beam transverse emittances can only be measured by CNI polarimeter scans. We discuss the consistency of these measurements with Ionization Profile Monitors (IPMs) and vernier scan luminosity measurements. Absolute accuracy limitations and cross-calibration of different techniques are also discussed.
Date: May 4, 2009
Creator: Zelenski,A.; Bazilevsky, A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y. et al.
Partner: UNT Libraries Government Documents Department

Can TMAE photocathode be used for high rate applications?

Description: The paper explores the problems associated with wire aging, charging effects and self-sustaining cathode currents in the TMAE based photo-detectors. It is generally believed that anode wire aging is the most serious problem encountered in TMAE (tetrakis dimethylamino ethylene)-based Cherenkov ring imaging detectors. Although charging effects and self-sustaining cathod currents have not been studied systematically, there is concern that they too could become significant over a long period of time.
Date: March 1, 1995
Creator: Va`vra, J.
Partner: UNT Libraries Government Documents Department


Description: Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.
Date: March 2002
Creator: Smith, G. C.
Partner: UNT Libraries Government Documents Department


Description: The increasing availability of short lived gamma and positron emitting isotopes, coupled with the importance of dynamical studies and better imaging, has generated the need for an improved {gamma}-ray camera. The authors discuss a new type of {gamma}-ray camera which makes use of electron avalanches in liquid xenon. A configuration currently under development is shown in Figure 1. The successful operation of a liquid xenon proportional counter was recently reported. The liquid xenon camera promises better spatial resolution and higher counting rate than the existing NaI(Tl) scintillation camera. The spatial resolution for {gamma} rays is in principle limited only by the range of photoelectrons in liquid xenon, which is < 0.2 mm for energies < 1 MeV. A counting rate of 10{sup 6} C/s or more appears possible. As a result of the better resolution and high counting rate capability, the definition of the picture is improved. In addition, the high counting rate capability makes possible dynamic studies which were previously unfeasible. Although they expect the energy resolution with liquid xenon to be superior to that of NaI, the preliminary measurements show 17% FWHM for 279 keV {gamma}'s. Improvements are expected by using better geometry and smoother wire.
Date: February 1, 1972
Creator: Zaklad, Haim.; Derenzo, Stephen E.; Muller, Richard A.; Smadja,Gerard.; Smits, Robert G. & Alvarez, Luis W.
Partner: UNT Libraries Government Documents Department


Description: The authors have measured the polarization parameter P in neutron-proton elastic scattering near the backward direction, using a polarized proton target. Measurements covered the range of incident neutron moment from 1.0 to 5.5 GeV/c and of four-momentum transfer squared u from -0.005 to -0.5 (GeV/c){sup 2}. Forward going protons were detected by means of a wire-spark-chamber spectrometer. Slow neutrons near 90 deg lab angle were detected in coincidence by means of an array of plastic scintillation counters. P was determined from the change in counting rate I of scattered particles upon reversal of the target polarization P{sub T} according to I = I{sub 0}[l + P(P{sub T} {center_dot} k incident neutron x k final neutron/sin {theta} final neutron)]. They find that P is consistently negative and shows no marked structure as a function of u and of incident momentum. The data roughly follow the simple form P = -0.5 {radical}-u/m{sub p}.
Date: January 1, 1970
Creator: Robrish, Peter R.; Chamberlain, Owen; Field Jr., Richard D.; Fuzesy, Raymond Z.; Gom, W.; Morehouse, Charles C. et al.
Partner: UNT Libraries Government Documents Department

Proposed electron halo detector system as one of the beam overlap diagnostic tools for the new RHIC electron lens

Description: An electron lens for head-on beam-beam compensation planned for RHIC requires precise overlap of the electron and proton beams which both can have down to 0.3 mm rms transverse radial widths along the 2m long interaction region. Here we describe a new diagnostic tool that is being considered to aid in the tuning and verification of this overlap. Some of ultra relativistic protons (100 or 250 GeV) colliding with low energy electrons (2 to 10 keV) will transfer sufficient transverse momentum to cause the electrons to spiral around the magnetic guiding field in a way that will make them detectable outside of the main solenoid. Time-of-flight of the halo electron signals will provide position-sensitive information along the overlap region. Scattering cross sections are calculated and counting rate estimates are presented as function of electron energy and detector position.
Date: March 28, 2011
Creator: Thieberger, P.; Alessi, J.; Beebe, E.; Chasman, C.; Fischer, W.; Gassner, D. et al.
Partner: UNT Libraries Government Documents Department

The BaBar Gas Bubbler Upgrade and Evaluation

Description: The Instrumented Flux Return region (muon and K{sub L} detection barrel) of the BaBar detector at SLAC requires careful monitoring of the gas flow through the detector array. This is currently done by a system of digital gas bubblers which monitor the flow rate by using photogate technology to detect the presence of bubbles formed by gas flowing through an internal oil chamber. Recently, however, a design flaw was discovered in these bubblers. Because the bubblers are connected directly to the detector array with no filter, during rises in atmospheric pressure or a drop in the gas flow rate (e.g. when the gas system is shut off for maintenance), the oil in this chamber could be forced backwards into the detector tubes. To compensate for this problem, we upgraded the existing gas bubbler systems by installing metal traps into the old gas lines to capture the oil. This installation was followed by an evaluation of the retro-fitted bubblers during which we determined a relationship between the bubble counting rate and the actual gas flow rate, but encountered recurring problems with baseline fluctuations and unstable bubble counting rates. Future work will involve the study of how these instabilities develop, and whether or not they can be mitigated.
Date: December 15, 2005
Creator: Gan, Yu; U., /Princeton; Young, C. & /SLAC
Partner: UNT Libraries Government Documents Department


Description: The RBRC Workshop on Physics of Polarimetry at RHIC was held from Aug 4 to 7, 1998 at BNL. The primary motive of the workshop is (1) to discuss the RHIC polarimeter using the elastic proton-carbon scattering at Coulomb-nuclear interference region (p-C CNI polarimeter) in detail and write a proposal for the test experiment a t the AGS, (2) to discuss the related physics, (3) and to discuss other options for the RHIC polarimetry. The idea of the p-C CNI polarimeter was proposed last year as a simple, inexpensive and efficient polarimeter for RHIC. In order to establish this polarimeter, we have decided to carry out a test experiment by using a polarized beam at the AGS. We have made a draft of the proposal during the workshop. For the p-C CNI polarimeter, a telescope detector using both the micro-channel plate (MCP) and the SSD was proposed to detect low energy recoil carbon ions, based on the test measurements at IUCF and Kyoto, where the carbon ions as low as 200 keV were successfully detected. The kinetic energy of carbon ion is measured with the SSD, and the velocity is measured by TOF between the two detectors and between the accelerator rf pulse and the two detectors. Counting rates for the background and true events were estimated. With the proposed polarimeter, one can expect to measure the beam polarization at the AGS and RHIC at an accuracy of 10% within a reasonable time period. We will test this detector system at Kyoto as soon as possible and install it in the AGS ring for the test measurement of A{sub N} during E880 which is scheduled early in the next year.
Date: August 4, 1998
Creator: IMAI,K. & FIELDS,D.
Partner: UNT Libraries Government Documents Department

Report of tritide study at the Responsive Neutron Generator Product Deployment Center.

Description: This report documents a study of sample counting results for wipes from routine surface area monitoring conducted at the Responsive Neutron Generator Product Deployment Center (RNGPDC) at Sandia National Laboratories (SNL). The study was initiated in November 2006, with two samples suspected of containing erbium tritide, after some samples were found to exhibit higher tritium counting rates upon recount at a later time. The main goal of the study was to determine whether the current practice of analyzing tritium wipe samples once, within a few days of sample collection, is adequate to accurately quantify the amount of tritium on the sample when tritides may be present. Recommendations are made toward routine recounting of vials suspected of containing particulate forms of tritium.
Date: November 1, 2008
Creator: Burkhart, Robert & Coffey, Jaime
Partner: UNT Libraries Government Documents Department


Description: Previous studies had been done in order to show the attenuation of alpha particles in filter media. These studies provided an accurate correction for this attenuation, but there had not yet been a study with sufficient results to properly correct for attenuation due to dust loading on the filters. At the Savannah River Site, filter samples are corrected for attenuation due to dust loading at 20%. Depending on the facility the filter comes from and the duration of the sampling period, the proper correction factor may vary. The objective of this study was to determine self-absorption curves for each of three counting instruments. Prior work indicated significant decreases in alpha count rate (as much as 38%) due to dust loading, especially on filters from facilities where sampling takes place over long intervals. The alpha count rate decreased because of a decrease in the energy of the alpha. The study performed resulted in a set of alpha absorption curves for each of three detectors. This study also took into account the affects of the geometry differences in the different counting equipment used.
Date: August 9, 2007
Creator: Dailey, A & Dennis Hadlock, D
Partner: UNT Libraries Government Documents Department

Shuffler bias corrections using calculated count rates

Description: Los Alamos National Laboratory has two identical shufflers that have been calibrated with a dozen U{sub 3}O{sub 8} certified standards from 10 g {sup 235}U to 3600 g {sup 235}U. The shufflers are used to assay a wide variety of material types for their {sup 235}U contents. When the items differ greatly in chemical composition or shape from the U{sub 3}O{sub 8} standards a bias is introduced because the calibration is not appropriate. Recently a new tool has been created to calculate shuffler count rates accurately, and this has been applied to generate bias correction factors. The tool has also been used to verify the masses and count rates of some uncertified U{sub 3}O{sub 8} standards up to 8.0 kg of {sup 235}U which were used to provisionally extend the calibration beyond the 3.6 kg of {sup 235}U mass when a special need arose. Metallic uranium has significantly different neutronic properties from the U{sub 3}O{sub 8} standards and measured count rates from metals are biased low when the U{sub 3}O{sub 8} calibration is applied. The application of the calculational tool to generate bias corrrections for assorted metals will be described. The accuracy of the calculational tool was verified using highly enriched metal disk standards that could be stacked to form cylinders or put into spread arrays.
Date: April 1, 2001
Creator: Rinard, Phillip M.; Hurd, J. R. (Jon R.) & Hsue, F. (Faye)
Partner: UNT Libraries Government Documents Department

Experiment to Measure Deep Inelastic Electron Scattering on Hydrogen and Deuterium with Seperation of Nu(W)(2) and W(1) Nucleon Structure Functions, at the Highest Fermilab Energies and Q(2) Regions

Description: The authors propose to measure the inclusive deep inelastic electron-nucleon scattering cross sections on hydrogen and deuterium. Cross sections will be measured in the range of momentum transfers Q{sub min}{sup 2} = 0.160 (GeV/c){sup 2} and Q{sub max}{sup 2} = 160.0 (GeV/c){sup 2}, in the range of recoil hadronic mass squared of W{sub min}{sup 2} = 2 GeV{sup 2} and W{sub max}{sup 2} = 450 GeV{sup 2}. The electromagnetic structure functions, {nu}W{sub 2}(Q{sup 2},{nu}) and W{sub 1}(Q{sup 2},{nu}), of both protons and neutrons will be measured and separated by well-known methods, in the highest possible unexplored FERMILAB kinematical regions. The high intensity Proton-West superconducting beam will be used to yield an electron beam of high purity, based on a synchrotron radiation compensated tuning technique. The electron beam will be used at 150 GeV (5 x 10{sup 8} e{sup {+-}}/pulse), at 175 GeV (3.6 x 10{sup 8} e{sup {+-}}/pulse) and at 250 GeV (1 x 10{sup 8} e{sup {+-}}/pulse). The scattered electron will be detected with good acceptance, good resolution and excellent identification. The detector will be the E-192 apparatus with small additions. A simple self-calibration procedure is available, both in experiment and apparatus, removing beam-associated and target-associated background in the entire (Q{sup 2}, W{sup 2}) kinematical regions. Usually, interesting physics occurs where counting rates are small. This experiment will be completely trust-worthy in such regions because their apparatus provides excellent information on the tracking and identification of scattered electrons.
Date: October 15, 1975
Creator: Conger, G.; Edighoffer, J.; Grigorian, A.; Guiragossian, Z.G.T.; Hofstadter, R.; McPharlin, T.P. et al.
Partner: UNT Libraries Government Documents Department

Physics of the {sup 252}Cf-source-driven noise analysis measurement

Description: The {sup 252}Cf-source-driven noise analysis method is a versatile measurements tool that has been applied to measurements for initial loading of reactors, quality assurance of reactor fuel elements, fuel processing facilities, fuel reprocessing facilities, fuel storage facilities, zero-power testing of reactors, verification of calculational methods, process monitoring, characterization of storage vaults, and nuclear weapons identification. This method`s broad range of application is due to the wide variety of time- and frequency domain signatures, each with unique properties, obtained from the measurement. The following parameters are obtained from this measurement: average detector count rates, detector multiplicities, detector autocorrelations, cross-correlation between detectors, detector autopower spectral densities, cross-power spectral densities between detectors, coherences, and ratios of spectral densities. All of these measured parameters can also be calculated using the MCNP-DSP Monte Carlo code. This paper presents a review of the time-domain signatures obtained from this measurement.
Date: February 1, 1997
Creator: Valentine, T.E.; Mihalczo, J.T.; Perez, R.B. & Mattingly, J.K.
Partner: UNT Libraries Government Documents Department

Cadium-Zinc-Telluride (CZT) Gamma Ray Spectrometry

Description: This report describes CZT crystals and their use in large arrays for generation of gamma ray spectra. Laboratory spectra will be shown together with spectra accumulated by various battery powered portable instruments (see Appendix A). One of these portable instruments was specifically constructed to minimize power consumption and yet provide reasonable isotope identification capability. Detailed data will be presented covering gamma energy resolution, gamma peak shapes, system background, and detector efficiency. Nearly all data were taken with very small crystals of CZT; cubes 5 mm on a side. A few spectra will be presented from cylindrical crystals of about the same size (see Appendix A). The small crystal size leads to low counting rates and extended counting times for reliable isotope identification. We have addressed this problem by using arrays of CZT crystals, initially two crystals and, at present, arrays of eight crystals. Data will be shown relating spectral parameters for these two arrays. System MDA is one way of combining resolution, efficiency, and background that will enable direct comparison of various detector types for individual isotope identification. We have calculated the MDA for an early dual crystal array and the current eight crystal array. Data derived from each array will be presented. In addition, it is possible to extrapolate the MDA methodology to much larger arrays. A 32-crystal array is under construction and extrapolations to 256 and 1024 crystals are considered possible. Estimated MDA values for these larger arrays are also presented. Several 8-crystal arrays have been constructed and versions have been incorporated into portable instruments. Descriptions of these small instruments are given covering physical size, weight, and general configuration. These instruments have been tested for shock and temperature effects and data will be presented on the results of these tests. The MDA concept will also allow extrapolation to ...
Date: September 1, 2001
Creator: Quam, William
Partner: UNT Libraries Government Documents Department

Subcritical Neutron Multiplication Measurements of HEU Using Delayed Neutrons as the Driving Source

Description: A new method for the determination of the multiplication of highly enriched uranium systems is presented. The method uses delayed neutrons to drive the HEU system. These delayed neutrons are from fission events induced by a pulsed 14-MeV neutron source. Between pulses, neutrons are detected within a medium efficiency neutron detector using {sup 3}He ionization tubes within polyethylene enclosures. The neutron detection times are recorded relative to the initiation of the 14-MeV neutron pulse, and subsequently analyzed with the Feynman reduced variance method to extract singles, doubles and triples neutron counting rates. Measurements have been made on a set of nested hollow spheres of 93% enriched uranium, with mass values from 3.86 kg to 21.48 kg. The singles, doubles and triples counting rates for each uranium system are compared to calculations from point kinetics models of neutron multiplicity to assign multiplication values. These multiplication values are compared to those from MC NP K-Code calculations.
Date: September 20, 1999
Creator: Hollas, C.L.; Goulding, C.A. & Myers, W.L.
Partner: UNT Libraries Government Documents Department