87 Matching Results

Search Results

Advanced search parameters have been applied.

Effectiveness of molybdenum disulfide as a fretting-corrosion inhibitor

Description: Report presenting an investigation of the effectiveness of molybdenum disulfide as a fretting-corrosion inhibitor. Six methods of applying MoS2 to steel specimens was evaluated by noting the number of cycles of vibration required to produce the first evidence of fretting corrosion and by observing the nature of its occurrence. Experiments were conducted with steel balls vibrating in contact with glass flats whereby the action could be microscopically observed.
Date: September 1950
Creator: Godfrey, Douglas & Bisson, Edmond E.
Partner: UNT Libraries Government Documents Department

Characterization Activities Conducted at the 183-DR Site in Support of an In Situ Gaseous Reduction Demonstration

Description: In Situ Gaseous Reduction (ISGR) is a technology developed by DOE for the remediation of soil waste sites contaminated with hexavalent chromium. This document presents information associated with characterization activities conducted at the 183-DR site at Hanford, which is associated with a significant groundwater contaminant plume and was formerly a water treatment facility that utilized chromate as a corrosion inhibitor. Geotechnical and chemical data were collected during the excavation of trenches and the drilling of two vadose zone boreholes to support a possible ISGR demonstration at 183-DR. Although elevated total chromium and trace levels of hexavalent chromium were identified from one of the trenches and one of the boreholes, it appears that the boreholes missed the vadose zone contaminant source responsible for the chromium groundwater plume located downgradient of the 183-DR site. Recommendations are provided, however, for future work at 183-DR that may serve to identify the source for the groundwater plume and possibly provide an opportunity for an ISGR demonstration.
Date: March 30, 2001
Creator: Thornton, Edward C; Gilmore, Tyler J; Olsen, Khris B; Schalla, Ronald & Cantrell, Kirk J
Partner: UNT Libraries Government Documents Department

CHROMATE INHIBITION OF THE LOCALIZED CORROSION OF ALUMINUM: MEASUREMENTS OF ELECTROCHEMICAL TRANSIENTS.

Description: We investigated the inhibition by chromate ions of the localized corrosion of aluminum by electrochemical transient measurements. In agreement with other work, the measurements demonstrated that chromate is a cathodic inhibitor for aluminum in open circuit. The reduction of hexavalent chromium to trivalent chromium is assumed to take place on catalyzed sites of the surface. The resulting products inhibit oxygen reduction reactions at these sites, thereby retarding pitting corrosion.
Date: September 2, 2001
Creator: SASAKI,K. & ISAACS,H.S.
Partner: UNT Libraries Government Documents Department

An Investigation of Tendon Corrosion-Inhibitor Leakage into Concrete

Description: During inspections performed at US nuclear power plants several years ago, some of the prestressed concrete containment had experienced leakage of the tendon sheathing filler. A study was conducted to indicate the extent of the leakage into the concrete and its potential effects on concrete properties. Concrete core samples were obtained from the Trojan Nuclear Plant. Examination and testing of the core samples indicated that the appearance of tendon sheathing filler on the surface was due to leakage of the filler from the conduits and its subsequent migration to the concrete surface through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks with no perceptible movement into the concrete. Results of compressive strength tests indicated that the concrete quality was consistent in the containment and that the strength had increased relative to the strength at 28 days age.
Date: July 5, 1999
Creator: Costello, J.F.; Naus, D.J. & Oland, C.B.
Partner: UNT Libraries Government Documents Department

Aging, stressing and solderability of electroplated and electroless copper

Description: Organic inhibitors can be used to prevent corrosion of metals have application in the electronics industry as solderability preservatives. We have developed a model to describe the action of two inhibitors (benzotriazole and imidazole) during the environmental aging and soldering process. The inhibitors bond with the metal surface and form a barrier that prevents or retards oxidation. At soldering temperatures, the metal-organic complex breaks down leaving an oxide-free metal surface that allows excellent wetting by the molten solder. The presence of the inhibitor retards the wetting rate relative to clean copper but provides a vast improvement relative to oxidized copper.
Date: August 1, 1995
Creator: Sorensen, N.R. & Hosking, F.M.
Partner: UNT Libraries Government Documents Department

Corrosion probe. Innovative technology summary report

Description: Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.
Date: May 1, 1999
Partner: UNT Libraries Government Documents Department

Use of coupled passivants and consolidants on calcite mineral surfaces

Description: Deterioration of monuments, buildings, and works of art constructed of carbonate-based stone potentially can be arrested by applying a combination of chemical passivants and consolidants that prevent hydrolytic attack and mechanical weakening. The authors used molecular modeling and laboratory synthesis to develop an improved passivating agent for the calcite mineral surface based on binding strength and molecular packing density. The effectiveness of the passivating agent with and without a linked outer layer of consolidant against chemical weathering was determined through leaching tests conducted with a pH-stat apparatus at pH 5 and 25 C. For the range of molecules considered, modeling results indicate that the strongest-binding passivant is the trimethoxy dianionic form of silylalkylaminocarboxylate (SAAC). The same form of silylalkylphosphonate (SAP) is the second strongest binder and the trisilanol neutral form of aminoethylaminopropylsilane (AEAPS) is ranked third. Short-term leaching tests on calcite powders coated with the trisilanol derivative of SAAC, the triethoxy neutral form of SAP, and the trimethoxy neutral form of AEAPS show that the passivant alone does not significantly slow the dissolution rate. However, all passivants when linked to the sol consolidant result in decreased rates. Combined AEAPS plus consolidant results in a coating that performs better than the commercial product Conservare{reg_sign} OH and at least as well as Conservare{reg_sign} H. The modeling results indicate that there may be a threshold binding energy for the passivant above which the dissolution rate of calcite is actually enhanced. More strongly-binding passivants may aid in the dissolution mechanism or dissociate in aqueous solution exposing the calcite surface to water.
Date: February 1, 1997
Creator: Nagy, K.L.; Cygan, R.T.; Brinker, C.J.; Ashley, C.S. & Scotto, C.S.
Partner: UNT Libraries Government Documents Department

Selecting an Algicide for Use with Aluminum Alloys

Description: This paper discusses the testing and results of five relatively noncorrosive commercially available compounds compared with one another and with sodium hypochlorite for their potential applicability as algicides in water systems containing aluminum alloys.
Date: March 15, 2001
Creator: Wilde, E.W.
Partner: UNT Libraries Government Documents Department

Role and efforts of T3C in corrosion economics

Description: The basic purpose of T3C activity is to show how to acquire specific corrosion cost information so that overall costs for doing business can be reduced. The scope of T3C is to accumulate data, appraise methods, develop recommended practices, promote knowledge and communicate relative to the economic evaluation of corrosion and counter corrosion techniques.
Date: November 1, 1979
Creator: Perrigo, L.D.; Appleman, B.R.; Pamer, R.I. & Thompson, J.L.
Partner: UNT Libraries Government Documents Department

ANODIC BEHAVIOR OF ALLOY 22 IN HIGH NITRATE BRINES AT TEMPERATURES HIGHER THAN 100C

Description: Alloy 22 (N06022) may be susceptible to crevice corrosion in chloride solutions. Nitrate acts as an inhibitor to crevice corrosion. Several papers have been published regarding the effect of nitrate on the corrosion resistance of Alloy 22 at temperatures 100 C and lower. However, very little is known about the behavior of this alloy in highly concentrated brines at temperatures above 100 C. In the current work, electrochemical tests have been carried out to explore the anodic behavior of Alloy 22 in high chloride high nitrate electrolytes at temperatures as high as 160 C at ambient atmospheres. Even though Alloy 22 may adopt corrosion potentials in the order of +0.5 V (in the saturated silver chloride scale), it does not suffer crevice corrosion if there is high nitrate in the solution. That is, the inhibitive effect of nitrate on crevice corrosion is active for temperatures higher than 100 C.
Date: April 20, 2006
Creator: LLEVBARE, G.O.; ESTILL, J.C.; YILMAZ, A.; ETIEN, R.A. & STUART, G.A. HUST M.L.
Partner: UNT Libraries Government Documents Department

Sulfur-induced corrosion of Au(111) studied by real-time STM

Description: The interaction of sulfur with gold surfaces has attracted considerable interest due to numerous technological applications such as the formation of self-assembled monolayers (SAMs), use as a corrosion inhibitor, and as a chemical sensor. In this work, the interaction of sulfur with Au(111) at two different temperatures (300 K and 420 K) was studied by real-time scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). In the low coverage regime (< 0.1 monolayer), S modifies the surface stress leading to a lateral expansion of the Au surface layer. An ordered ({radical}3 x {radical}3)R30{sup o} sulfur adlayer develops as the coverage reaches {approx}0.3 ML. With further increasing S coverage the Au(111) surface undergoes a dynamic rearrangement while forming a two-dimensional AuS phase: gold surface atoms are removed from regular terrace sites and incorporated into the growing gold sulfide phase resulting in the appearance of pits and irregularly shaped AuS islands. Gold sulfide prepared at room temperature exhibits short-range order; an incommensurate, long-range ordered AuS phase develops upon annealing at 450-525 K. Higher temperatures lead to decomposition of the AuS corrosion film. Formation of an ordered AuS phase via rapid step retraction rather than etch pit formation is observed during S-interaction with Au(111) surfaces at 420 K. Our results shed new light on the S-Au(111) interaction.
Date: November 2, 2004
Creator: Biener, M; Biener, J & Friend, C
Partner: UNT Libraries Government Documents Department

DETERMINATION OF CORROSION INHIBITOR CRITERIA FOR TYPE III/IIIA TANKS DURING SALT DISSOLUTION OPERATIONS INTERIM REPORT

Description: Preparation of high level waste for vitrification involves in part the dissolution of salt cake from the carbon steel storage tanks. During dissolution, a point is reached in which the corrosion inhibitors, hydroxide and nitrite, are diluted below established guidelines, and nitrate stress corrosion cracking (SCC) is possible. Because the addition of inhibitors may be counterproductive to process efficiency and waste minimization, corrosion testing was initiated to revisit and possibly revise the guidelines for inhibitor limits. The bases for the work summarized in this status report are results from previously-completed phases of study. In the first two phases of study, several reduced-inhibitor levels were tested in HLW simulants with nitrate concentrations ranging from 4.5 M to 8.5 M. The first two phases of work determined, among other things, the reduced-inhibitor levels and solution chemistries in which heat-treated and non-heat-treated A537 carbon steel is susceptible to SCC, crevice corrosion, and pitting. The work covered in this current task both builds on and verifies the conclusions of the previous work. The current work involves testing of low levels of inhibitors in HLW simulants with 5.5 M to 8.5 M nitrate concentrations. Stressed U-bend specimens, both polarized and non-polarized, were tested. Non-polarized U-bend testing is ongoing, with the U-bends currently in test for 100 days. The purpose of the testing is to determine SCC susceptibility in the vapor space (VS) and liquid air interface (LAI) regions of the HLW tanks under conditions expected during salt dissolution, and also to verify previous accelerated testing. The simulated wastes being tested have nitrate concentrations of 5.5 M and 8.5 M and inhibitor levels of 0.01 M/0.01 M hydroxide/nitrite and 0.1 M/ 0.1 M hydroxide/nitrite. The open circuit potential measurements being monitored and the corrosion morphology of the U-bends are in agreement with results and observations of ...
Date: December 31, 2007
Creator: Counts, K; Bruce Wiersma, B & John Mickalonis, J
Partner: UNT Libraries Government Documents Department

DETERMINATION OF CORROSION INHIBITOR CRITERIA FOR TYPE III/IIIA TANKS DURING SALT DISSOLUTION OPERATIONS SUMMARY DOCUMENT

Description: Dissolution of salt from Type III/IIIA waste tanks at the Savannah River Site may create solutions with inhibitor concentrations below those currently required (0.6M OH{sup -} and 1.1M OH{sup -} + NO{sub 2}{sup -}) per the Corrosion Control Program for high nitrate salt solutions (5.5 to 8.5M NO{sub 3}{sup -}). An experimental program was conducted to evaluate the corrosion susceptibility of grade A537 carbon steel for waste simulants containing 4.5-8.5M NaNO{sub 3} with maximum inhibitor concentrations of 0.6M NaOH and 0.2M NaNO{sub 2}. These maximum inhibitor concentrations used in this program are at a reduced level from those currently required. Current requirements were initially established for the Types I, II and IV tanks made of A285 carbon steel. The experimental program involved corrosion testing to evaluate the pitting and stress corrosion stress corrosion cracking (SCC) susceptibility of the Type III/IIIA waste tank materials. The program was conducted in two phases; the results of the first phase were reported previously (WSRC-STI-2006-00029). In this second phase, the corrosion specimens were modified to represent the 'as-fabricated' condition of the tank wall, and included specimens with mill scale, ground welds and stress-relief heat treatments. The complete description of the corrosion testing and the results are reported herein. The collective corrosion test results for A537 carbon steel in high nitrate waste simulants (4.5 - 8.5M) with the maximum inhibitor concentrations of 0.6M NaOH and 0.2M NaNO{sub 2} were as follows: (1) In long-term non-polarized U-bend testing, heat treatment, similar to the waste tank stress relief regime, reduced the incidence of cracking over the 18-month test period. Vapor space SCC was found to initiate on non-heat treated U-bend coupons. (2) In polarized U-bend testing, cracking occurred on U-bend coupons that had welds prepared similar to those in the waste tanks, i.e. ground and heat treated. (3) ...
Date: October 1, 2009
Creator: Mickalonis, J.; Wiersma, B. & Garcia-Diaz, B.
Partner: UNT Libraries Government Documents Department

PROBABILITY BASED CORROSION CONTROL FOR LIQUID WASTE TANKS - PART III

Description: The liquid waste chemistry control program is designed to reduce the pitting corrosion occurrence on tank walls. The chemistry control program has been implemented, in part, by applying engineering judgment safety factors to experimental data. However, the simple application of a general safety factor can result in use of excessive corrosion inhibiting agents. The required use of excess corrosion inhibitors can be costly for tank maintenance, waste processing, and in future tank closure. It is proposed that a probability-based approach can be used to quantify the risk associated with the chemistry control program. This approach can lead to the application of tank-specific chemistry control programs reducing overall costs associated with overly conservative use of inhibitor. Furthermore, when using nitrite as an inhibitor, the current chemistry control program is based on a linear model of increased aggressive species requiring increased protective species. This linear model was primarily supported by experimental data obtained from dilute solutions with nitrate concentrations less than 0.6 M, but is used to produce the current chemistry control program up to 1.0 M nitrate. Therefore, in the nitrate space between 0.6 and 1.0 M, the current control limit is based on assumptions that the linear model developed from data in the <0.6 M region is applicable in the 0.6-1.0 M region. Due to this assumption, further investigation of the nitrate region of 0.6 M to 1.0 M has potential for significant inhibitor reduction, while maintaining the same level of corrosion risk associated with the current chemistry control program. Ongoing studies have been conducted in FY07, FY08, FY09 and FY10 to evaluate the corrosion controls at the SRS tank farm and to assess the minimum nitrite concentrations to inhibit pitting in ASTM A537 carbon steel below 1.0 molar nitrate. The experimentation from FY08 suggested a non-linear model known as ...
Date: December 9, 2010
Creator: Hoffman, E. & Edwards, T.
Partner: UNT Libraries Government Documents Department

REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

Description: A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previous review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be ...
Date: August 1, 2009
Creator: Hay, M. & Koopman, D.
Partner: UNT Libraries Government Documents Department

Advanced zinc phosphate conversion coatings. Final report, June 1996--December 1996

Description: A SERDP-sponsored program aims at developing environmentally benign zinc phosphate conversion coatings and their process technologies for the electrogalvanized steel (EGS). We succeeded in formulating an environmentally acceptable phosphate solution without Co- and Ni-related additives, and also in replacing a hexavalent Cr acid sealant applied over the zinc phosphate (Zh-Ph) layers with a water-based polysiloxane sealers. The specific advantages of the newly developed Zn-Ph coatings were as follows: (1) there was rapid growth of uniform, dense embryonic Zn-Ph crystals on the EGS surfaces due to the creation of short-circuited cells with Mn acting as the cathode and the galvanized (zinc) coatings as the anode, (2) an excellent protection layer against corrosion was formed, extending the service life of zinc layers as galvanic sacrifice barriers, and (3) adhesion to the electro-deposited polymeric primer coating was improved because of the interaction between the siloxane sealer and primer. A full-scale demonstration to evaluate the reproducibility of this new coating technology on mini-sized automotive door panels made from EGS was carried out in collaboration with the Palnut Company (as industrial coating applicator) in New Jersey. All of the 150 mini-door panels were successfully coated with Zn-Ph.
Date: April 1997
Creator: Handsy, C. I. & Sugama, T.
Partner: UNT Libraries Government Documents Department

An investigation of tendon sheathing filler migration into concrete

Description: During some of the inspections at nuclear power plants with prestressed concrete containments, it was observed that the containments has experienced leakage of the tendon sheathing filler (i.e., streaks). The objective of this activity was to provide an indication of the extent of tendon sheathing filler leakage into the concrete and its affects on concrete properties. Literature was reviewed and concrete core samples were obtained from the Trojan Nuclear Plant and tested. The literature primarily addressed effects of crude or lubricating oils that are known to cause concrete damage. However, these materials have significantly different characteristics relative to the materials used as tendon sheathing fillers. Examination and testing of the concrete cores indicated that the appearance of tendon sheathing filler on the concrete surface was due to leakage from the conduits and its subsequent migration through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks and there was no perceptible movement into the concrete. Results of compressive strength testing indicated that the concrete quality was consistent in the containment and that the strength had increased over 40% in 25.4 years relative to the average compressive strength at 28-days age.
Date: March 1, 1998
Creator: Naus, D.J. & Oland, C.B.
Partner: UNT Libraries Government Documents Department

The biofilm ecology of microbial biofouling, biocide resistance and corrosion

Description: In biotechnological or bioremediation processes it is often the aim to promote biofilm formation, and maintain active, high density biomass. In other situations, biofouling can seriously restrict effective heat transport, membrane processes, and potentate macrofouling with loss of transportation efficiency. In biotechnological or bioremediation processes it is often the aim to promote biofilm formation, and maintain active, high density biomass. In other situations, biofouling can seriously restrict effective heat transport, membrane processes, and potentate macrofouling with loss of transportation efficiency. Heterogeneous distribution of microbes and/or their metabolic activity can promote microbially influenced corrosion (MIC) which is a multibillion dollar problem. Consequently, it is important that biofilm microbial ecology be understood so it can be manipulated rationally. It is usually simple to select organisms that form biofilms by flowing a considerably dilute media over a substratum, and propagating the organisms that attach. To examine the biofilm most expeditiously, the biomass accumulation, desquamation, and metabolic activities need to be monitored on-line and non-destructively. This on-line monitoring becomes even more valuable if the activities can be locally mapped in time and space within the biofilm. Herein the authors describe quantitative measures of microbial biofouling, the ecology of pathogens in drinking water distributions systems, and localization of microbial biofilms and activities with localized MIC.
Date: June 1, 1997
Creator: White, D.C.; Kirkegaard, R.D.; Palmer, R.J. Jr.; Flemming, C.A.; Chen, G.; Leung, K.T. et al.
Partner: UNT Libraries Government Documents Department

Electrochemical noise measurements of sustained microbially influenced pitting corrosion in a laboratory flow loop system.

Description: Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. We have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of the trend of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean- square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring system when a corrosion inhibitor was added ...
Date: January 13, 1999
Creator: Lin, Y. J.
Partner: UNT Libraries Government Documents Department

Co2 Capture by Absorption With Potassium Carbonate

Description: The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The stripper model with Aspen Custom Modeler and careful optimization of solvent rate suggests that 7 m MEA and 5 m K+/2.5 m PZ will be practically equivalent in energy requirement and optimum solution capacity. The multipressure stripper reduces energy consumption by 15% with a maximum pressure of 5 atm. The use of vanadium as a corrosion inhibitor will carry little risk of long-term environmental or health effects liability, but the disposal of solvent with vanadium will be subject to regulation, probably as a hazardous waste. Analysis of the pilot plant data from Campaign 1 has given values of the mass transfer coefficient consistent with the rate data from the wetted wall column. With a rich end pinch, 30% MEA should provide a capacity of 1.3-1.4 mole CO{sub 2}/kg solvent.
Date: November 8, 2004
Creator: Rochelle, Gary T.; Chen, Eric; Lu, Jennifer; Oyenekan, Babatunde & Dugas, Ross
Partner: UNT Libraries Government Documents Department

ENVIRONMENTALLY BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

Description: The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter includes the application of new methods of Capsicum sp. (pepper) extraction by soxhlet method and analysis of a new set of extracts by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC); isolation and cultivation of MIC-causing microorganisms from corroded pipeline samples; and evaluation of antimicrobial activities of the old set of pepper extracts in comparison with major components of known biocides and corrosion inhibitors. Twelve new extracts from three varieties of Capsicum sp. (Serrano, Habanero, and Chile de Arbol) were obtained by soxhlet extraction using 4 different solvents. Results of TLC done on these extracts showed the presence of capsaicin and some phenolic compounds, while that of HPLC detected capsaicin and dihydrocapsaicin peaks. More tests will be done to determine specific components. Additional isolates from the group of heterotrophic, acid-producing, denitrifying and sulfate-reducing bacteria were obtained from the pipeline samples submitted by gas companies. Isolates of interest will be used in subsequent antimicrobial testing and test-loop simulation system experiments. Results of antimicrobial screening of Capsicum sp. extracts and components of known commercial biocides showed comparable activities when tested against two strains of sulfate-reducing bacteria.
Date: April 1, 2003
Creator: Paterek, J. Robert; Husmillo, Gemma; Daram, Amrutha; Trbovic, Vesna & Storino, Teri
Partner: UNT Libraries Government Documents Department