6,863 Matching Results

Search Results

Advanced search parameters have been applied.

How to Store Energy Fast

Description: Representing the Molecularly Engineered Energy Materials (MEEM), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of MEEM, using inexpensive custom-designed molecular building blocks, aims to create revolutionary new materials with self-assembled multi-scale architectures that will enable high performing energy generation and storage applications.
Date: July 18, 2013
Creator: Augustyn, Veronica; Ko, Jesse & Rauda, Iris
Partner: UNT Libraries Government Documents Department

Controlling Light to Make the Most Energy From the Sun

Description: Representing the Light-Material Interactions in Energy Conversion (LMI), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of LMI to tailor the morphology, complex dielectric structure, and electronic properties of matter so as to sculpt the flow of sunlight and heat, enabling light conversion to electrical and chemical energy with unprecedented efficiency.
Date: July 18, 2013
Creator: Callahan, Dennis; Corcoran, Chris; Eisler, Carissa; Flowers, Cris; Goodman, Matt; Hofmann, Carrie et al.
Partner: UNT Libraries Government Documents Department

Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

Description: An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. ...
Date: October 1, 2013
Creator: Ilas, Dan
Partner: UNT Libraries Government Documents Department

Fuel Cell Research at the University of South Carolina

Description: Five projects are proposed, in an effort to supplement the efforts of fuel cell research at the University of South Carolina and to contribute to the Technical Plan for Fuel Cells of the Department of Energy. These efforts include significant interaction with the industrial community through DOE funded projects and through the National Science Foundation’s Industry/University Cooperative Research Center for Fuel Cells. The allocation of projects described below leverage all of these sources of funding without overlap and redundancy. The first project “Novel Non-Precious Metal Catalyst For PEMFCs,” (Dr. Branko Popov) continues DOE award DE-FC36-03GO13108 for which funding was delayed by DOE due to budget constraints. The purpose of this project is to develop an understanding of the feasibility and limitations of metal-free catalysts. The second project, “Non Carbon Supported Catalysts” (Dr. John Weidner), is focused on improved catalysts and seeks to develop novel materials, which are more corrosion resistant. This corrosion behavior is critical during transient operation and during start-up and shutdown. This second project will be leveraged with recent, peer-reviewed, supplemental funding from NSF for use in the National Science Foundation Industry/University Cooperative Research Center for Fuel Cells (CFC) at USC. The third project, “Hydrogen Quality,” (Dr. Jean St-Pierre) will support the cross-program effort on H2 quality and focus on supporting subteam 1. We assume this task because of we have performed experiments and developed models that describe performance losses associated with CO, NH3, H2S contaminants in the hydrogen fuel feed to laboratory-scale single cells. That work has been focused on reformate fed to a stationary PEMFC and relatively high concentrations of these contaminants, this project will seek to apply that knowledge to the issue of hydrogen fuel quality as it relates to transportation needs. As part of this project USC and Oak Ridge National Laboratory (ORNL) will ...
Date: September 25, 2006
Creator: Van Zee, John W.
Partner: UNT Libraries Government Documents Department

Fuel Cell Research at the University of South Carolina

Description: Five projects were conducted in an effort to supplement the efforts of fuel cell research at the University of South Carolina and to contribute to the Technical Plan for Fuel Cells of the Department of Energy. These efforts include significant interaction with the industrial community through DOE funded projects and through the National Science Foundation�s Industry/University Cooperative Research Center (NSF-I/UCRC) for Fuel Cells at USC. The allocation of projects described below leveraged all of these sources of funding without overlap and redundancy. 1. "Novel Non-Precious Metal Catalyst For PEMFCs" (Dr. Branko Popov) 2. "Non Carbon Supported Catalysts" (Dr. John Weidner) 3. "Hydrogen Quality" (Dr. Jean St-Pierre) 4. "Gasket Materials: Mechanical and Chemical Stability in PEMFC" (Dr. Y.J. (Bill) Chao) 5. "Mathematical Modeling of PEM Fuel Cells," (Dr. Sirivatch (Vatch) Shimpalee)
Date: September 25, 2006
Creator: Van Zee, John W.
Partner: UNT Libraries Government Documents Department

Improved Flow-Field Structures for Direct Methanol Fuel Cells

Description: The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.
Date: May 31, 2013
Creator: Gurau, Bogdan
Partner: UNT Libraries Government Documents Department

Viscous Glass Sealants for SOFC Applications

Description: Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.
Date: September 30, 2012
Creator: Misture, Scott
Partner: UNT Libraries Government Documents Department

Evaluation of a Functional Interconnect System for SOFC's

Description: The overall objective of this project was to validate the concept and application of a functional interconnect, based on a ferritic stainless steel, for a solid oxide fuel cell through manufacturing trials, laboratory testing, and field experience. The materials of construction and their surfaces were to be optimized for the particular service conditions and include low-cost ferritic stainless steels, novel postprocess treatments, and third-party coatings. This work aimed to optimize specific aspects of substrate alloy chemistry and to study the effects of long-term exposures on resistive oxide film structure and chemistry, interaction with applied surface coatings, and effectiveness of novel surface treatments.
Date: December 31, 2010
Creator: Bender, Matthew & Rakowski, James
Partner: UNT Libraries Government Documents Department

SECA Coal-Based Systems - LGFCS

Description: LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. This Department of Energy Solid-State Energy Conversion Alliance (SECA) program is aimed at achieving further cell and stack technical advancements and assessing the readiness of the LGFCS SOFC stack technology to be scaled to larger-scale demonstrations in subsequent phases. LGFCS is currently in Phase 2 of the program with the Phase 1 test carrying over for completion during Phase 2. Major technical results covering the initial Phase 2 budget period include: Metric Stack Testing: 1. The Phase I metric test is a ~7.6 kW block test (2 strips) in Canton that started in March 2012 and logged 2135 hours of testing prior to an event that required the test to be shutdown. The degradation rate through 2135 hours was 0.4%/1000 hours, well below the Phase I target of 2%/1000 hours and the Phase 2 target of 1.5%/1000 hours. 2. The initial Phase II metric test consisting of 5 strips (~19 kW) was started in May 2012. At the start of the test OCV was low and stack temperatures were out of range. Shutdown and inspection revealed localized structural damage to the strips. The strips were repaired and the test restarted October 11, 2012. 3. Root cause analysis of the Phase 1 and initial Phase 2 start-up failures concluded a localized short circuit across adjacent tubes/bundles caused localized heating and thermal stress fracture of substrates. Pre-reduction of strips rather than in-situ reduction within block test rigs now provides a critical quality check prior to block testing. The strip interconnect design has been modified to avoid short circuits. Stack Design: 1. Dense ceramic strip components were redesigned to ...
Date: August 1, 2013
Creator: Goettler, Richard
Partner: UNT Libraries Government Documents Department

Soild State Energy Conversion Energy Alliance (SECA)

Description: The overall objective is to develop a Solid Oxide Fuel Cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of {>=}35 percent (AC/LHV). In Phase II and Phase III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of {>=}40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of {>=}30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of {>=}30 percent (DC/LHV) and a factory cost of {<=}$400/kW.
Date: December 31, 2011
Partner: UNT Libraries Government Documents Department

Soild State Energy Conversion Energy Alliance (SECA)

Description: The overall objective is to develop a solid oxide fuel cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of 35 percent (AC/LHV). In Phase II and Phase III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of {>=}40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of {>=}30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of 30 percent (DC/LHV) and a factory cost of {<=}$400/kW.
Date: December 31, 2011
Partner: UNT Libraries Government Documents Department

Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

Description: Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled “Small Scale SOFC Demonstration using Bio-based and Fossil Fuels.” Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.
Date: March 31, 2012
Creator: Petrik, Michael & Ruhl, Robert
Partner: UNT Libraries Government Documents Department

DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

Description: Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure H{sub 2}/O{sub 2} due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO{sub 2} from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80�C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO{sub 2}, and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.
Date: May 1, 2012
Creator: Fox, E.
Partner: UNT Libraries Government Documents Department

Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell

Description: This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.
Date: December 6, 2011
Creator: Zia Mirza, Program Manager
Partner: UNT Libraries Government Documents Department

Siemens SOFC Test Article and Module Design

Description: Preliminary design studies of the 95 kWe-class SOFC test article continue resulting in a stack architecture of that is 1/3 of 250 kWe-class SOFC advanced module. The 95 kWeclass test article is envisioned to house 20 bundles (eight cells per bundle) of Delta8 cells with an active length of 100 cm. Significant progress was made in the conceptual design of the internal recirculation loop. Flow analyses were initiated in order to optimize the bundle row length for the 250 kWeclass advanced module. A preferred stack configuration based on acceptable flow and thermal distributions was identified. Potential module design and analysis issues associated with pressurized operation were identified.
Date: March 31, 2011
Partner: UNT Libraries Government Documents Department

Novel Low Temperature Solid State Fuel Cells

Description: We have successfully fabricated (PrBa)Co{sub 2}O{sub 5+{delta}} and (LaBa)Co{sub 2}O{sub 5+{deleta}} epitaxial thin film on various single crystal substrates. Physical and electrochemical properties characterizations were carried out. Highly conductive oxygen-deficient double perovskite LnBaCo2O5+? thin films were grown on single crystal (001) SrTiO{sub 3} (STO), (001) MgO, (001) LaAlO{sub 3} and (110) NdGaO{sub 3} substrate by pulsed laser deposition. Microstructure studies from synchrotron X-ray diffraction and Transmission electron microscopy. High temperature transport properties was carried in different atmosphere (O{sub 2},Air, N{sub 2}) up to ~900K. Resistance response of (LaBa)Co{sub 2}O{sub 5+{delta}} epitaxial thin film was characterized in oxygen, nitrogen and 4% hydrogen over a wide range of temperature from 400�C up to 800�C. To determine the electrode performance and oxygen exchange kinetics of PrBaCo{sub 2}O{sub 5+{delta}}, multi-layered thin film based half cell was deposited on LaAlO{sub 3}(001) substrate. The temperature dependence of the resistance of this half ?cell structure was characterized by electrochemical impedance spectroscopy (EIS) within different temperature and gas environments. Anode supported fuel cells, with GCO:YSZ multilayer thin film as electrolyte and PBCO thin film as electrode, are fabricated on tape casted NiO/YSZ substrate. Full cell performance is characterized up to 800�C.
Date: December 15, 2009
Creator: Chen, Chonglin; Nash, Patrick; Liu, Jian & Collins, Gregory
Partner: UNT Libraries Government Documents Department

LG Solid Oxide Fuel Cell (SOFC) Model Development

Description: This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (�LGFCS�) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.
Date: March 31, 2013
Creator: Haberman, Ben; Martinez-Baca, Carlos & Rush, Greg
Partner: UNT Libraries Government Documents Department

UTC Power/Delphi SECA CBS Final Report

Description: The subject report summarizes the results of solid oxide fuel cell development conducted by UTC Power in conjunction with Delphi Automotive Systems under a cost-share program with from October 2008 through March of 2013. Over that period Delphi Automotive Systems developed a nearly four times larger area solid oxide fuel cell stack capable of operating on pre-reformed natural gas and simulated coal gas with durability demonstrated to 5,000 hours and projected to exceed 10,000 hours. The new stack design was scaled to 40-cell stacks with power output in excess of 6.25kW. Delphi also made significant strides in improving the manufacturability, yield and production cost of these solid oxide fuel cells over the course of the program. Concurrently, UTC Power developed a conceptual design for a 120 MW Integrated Gasification Fuel Cell (IGFC) operating on coal syngas with as high as 57% Higher Heating Value (HHV) efficiency as a measure of the feasibility of the technology. Subsequently a 400 kW on-site system preliminary design with 55% Lower Heating Value (LHV) efficiency operating on natural gas was down-selected from eighteen candidate designs. That design was used as the basis for a 25kW breadboard power plant incorporating four Delphi cell stacks that was tested on natural gas before the program was discontinued due to the sale of UTC Power in early 2013. Though the program was cut short of the endurance target of 3,000 hours, many aspects of the technology were proven including: large-area, repeatable cell manufacture, cell stack operation on simulated coal gas and natural gas and integrated power plant operation on natural gas. The potential of the technology for high efficiency stationary electric power generation is clear. Acceptable production costs, durability, and reliability in real world environments are the remaining challenges to commercialization.
Date: April 4, 2013
Creator: Gorman, Michael & Kerr, Rich
Partner: UNT Libraries Government Documents Department

Transport Phenomena and Interfacial Kinetics in Planar Microfluidic Membraneless Fuel Cells

Description: Our work is focused on membraneless laminar flow fuel cells, an unconventional fuel cell technology, intended to create a system that not only avoids most typical fuel cell drawbacks, but also achieves the highest power density yet recorded for a non-H{sub 2} fuel cell. We have employed rigorous electrochemistry to characterize the high-energy- density fuel BH4-, providing important mechanistic insight for anode catalyst choice and avoiding deleterious side reactions. Numerous fuel cell oxidants, used in place of O{sub 2}, are compared in a detailed, uniform manner, and a powerful new oxidant, cerium ammonium nitrate (CAN), is described. The high-voltage BH{sub 4}{sup -}/CAN fuel/oxidant combination is employed in a membraneless, room temperature, laminar-flow fuel cell, with herringbone micromixers which provide chaotic-convective flow which, in turn, enhances both the power output and efficiency of the device. We have also been involved in the design of a scaled-up version of the membraneless laminar flow fuel cell intended to provide a 10W output.
Date: August 1, 2013
Creator: Abruna, Hector Daniel
Partner: UNT Libraries Government Documents Department

Innovative Self-Healing Seals for Solid Oxide Fuel Cells (SOFC)

Description: Solid oxide fuel cell (SOFC) technology is critical to several national initiatives. Solid State Energy Conversion Alliance (SECA) addresses the technology needs through its comprehensive programs on SOFC. A reliable and cost-effective seal that works at high temperatures is essential to the long-term performance of the SOFC for 40,000 hours at 800°C. Consequently, seals remain an area of highest priority for the SECA program and its industry teams. An innovative concept based on self-healing glasses was advanced and successfully demonstrated through seal tests for 3000 hours and 300 thermal cycles to minimize internal stresses under both steady state and thermal transients for making reliable seals for the SECA program. The self-healing concept requires glasses with low viscosity at the SOFC operating temperature of 800°C but this requirement may lead to excessive flow of the glass in areas forming the seal. To address this challenge, a modification to glass properties by addition of particulate fillers is pursued in the project. The underlying idea is that a non-reactive ceramic particulate filler is expected to form glass-ceramic composite and increase the seal viscosity thereby increasing the creep resistance of the glass-composite seals under load. The objectives of the program are to select appropriate filler materials for making glass-composite, fabricate glass-composites, measure thermal expansion behaviors, and determine stability of the glass-composites in air and fuel environments of a SOFC. Self-healing glass-YSZ composites are further developed and tested over a longer time periods under conditions typical of the SOFCs to validate the long-term stability up to 2000 hours. The new concepts of glass-composite seals, developed and nurtured in this program, are expected to be cost-effective as these are based on conventional processing approaches and use of the inexpensive materials.
Date: June 30, 2012
Creator: Singh, Raj
Partner: UNT Libraries Government Documents Department

Qualification of primary loop manifold of a liquid metal thermoelectric converter

Description: The mechanical cycling test was required to verify the integrity of the welded joints and the thin wall tube bends in the primary loop manifold assembly of a four pack thermo electric module and to help establish structural and mechanical requirements of any possible redesign. The test section was subjected to more severe loading conditions than will be experienced during actual operating conditions. The test was a mechanical simulation of the differential thermal expansion which occurs due to the approximately 600{degrees} F temperature differential in the subassembly. The actual load exerted on the test section represented this deflection. The effects on the joints and tube material were observed. The test was conducted on a test segment of manifold designed to duplicate two of the flexible elbows; the transition joints between the elbows and the tubular module inner clad; and the welded joints of the elbows to the primary loop header. The assembled test segment and hold-down bracket are shown. The bracket was mounted to the base of the Universal Test Machine. Dial indicators measured the relative displacement between the line of applied load (through the vertical axis of the primary loop header) and the attachment point at the holddown bracket. In the first test, the load was applied in fifty pound increments until the relative displacement of nine mils was measured between the loop header and the welded joint on the feedline elbow. The remaining tests were cycling the header assembly at increasing relative displace ment. The summary of these tests are tabulated. The testing had no noticeable affect on the structural integrity of the weldment.
Date: June 10, 1969
Creator: Bryant, E P; Cottam, A E; Ettenson, N J; Harves, T O; Kenney, J; Letchford, T A et al.
Partner: UNT Libraries Government Documents Department

Seawater Softening by Ion Exchange as a Saline Water Conversion Pretreatment

Description: From Introduction: "A pilot plant embodying these ideas, in an unusual method of softening, was designed and constructed by the Texas Division of The Dow Chemical Company. Two 4,000 gallon per day vapor compression evaporators were furnished for the testing program bu the Bureau of Yards and Docks of the United States Navy. This report summarizes the results of the testing program."
Date: May 1962
Creator: McIlhenny, W. F.
Partner: UNT Libraries Government Documents Department